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Silent Data Corruption (SDC) in processors can lead to various application-level issues, such as incorrect calculations and
even data loss. Since traditional techniques are not efective in detecting these errors, it is very hard to address problems
caused by SDCs in processors. For the same reason, knowledge about these SDCs in the wild is limited.

In this paper, we conduct an extensive study on CPU SDCs in a large production CPU population, encompassing over one
million processors. In addition to collecting overall statistics, we perform a detailed study to understand 1) whether certain
processor features are particularly vulnerable and their potential impacts on applications; 2) the reproducibility of CPU SDCs
and the triggering conditions (e.g., temperature) of those less reproducible SDCs; and 3) the challenges to mitigate and handle
CPU SDCs.

We further investigate the implications which our observations obtained from the above researches have, on the SDC fault
models, SDC mitigation strategies and the future research ields. In addition, we design an eicient SDC mitigation approach
called Farron, which uses prioritized testing to detect highly reproducible SDCs and temperature control to mitigate less
reproducible SDCs. Our experimental results indicate that Farron can achieve better coverage of CPU SDCs with lower overall
overhead, compared to the baseline used in Alibaba Cloud. This demonstrates that our observations are able to assist in SDC
mitigation.
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handling, implications of our observations, more statistics data from newly found faulty processors, as well as details requested during the
conference.
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1 Introduction

In recent years, CPU technology has achieved rapid development with higher clock frequency and more cores
attached in one processor. A classical assumption is that processors work as designed and produce reliable
computation results [29]. However, processor faults do occur in production environments [23, 24, 32, 37, 44].
Both the growing complexity of modern CPUs and the increasing scale of cloud infrastructures have increased
the risk of processor faults.

These processor faults can lead to application-level errors, which fall into two categories. One class of errors
causes crashes or exceptions promptly. The other class of errors can introduce undesired data (e.g., incorrect
calculation results or even data loss) without being detected immediately. The second class of errors caused by
processor faults is also known as łsilent data corruptionž, abbreviated as CPU SDC or SDC [23, 32].

CPU SDCs occur at a low but non-negligible frequency in production. For example, a few processors in Alibaba
Cloud occasionally gave wrong checksum calculation results. Such incorrect information misled the cloud
application to conclude that request data was corrupted and thus triggered repeated requests frequently, which
impaired the overall performance. CPU SDCs also occur in Google Cloud [32]: a small subset of their processors
gave wrong results when executing some rarely-used instructions. These errors made a large-scale data-analysis
application give wrong answers. Meta also notices CPU SDCs [23]: one machine occasionally misjudged the ile
size to be zero due to wrong calculation, and caused a database to lose iles.
Data corruptions in storage and memory systems are well-known to be dangerous and hard to detect and

diagnose. CPU SDCs are even more notorious, because the basic technique to detect data corruptions in storage
andmemory systems can hardly be applied to CPU instructions (e.g., how to know that a computational instruction
gives a wrong result?). As a result, Meta shows CPU SDCs can require months of engineering time to debug [23],
and Alibaba Cloud once took several weeks to debug a CPU SDC issue.
Researchers have conducted studies on CPU SDCs [3, 11, 14, 23, 24, 30, 32, 50, 55, 57], which fall into three

categories: 1) theoretically stating the existence of CPU SDCs but not studying concrete errors [4, 14]; 2) studying
the impacts and tolerance techniques of SDCs, through artiicial fault injection instead of naturally produced
SDCs [26, 28, 36, 46, 50, 52]; 3) providing brief data about CPU SDC cases in real world but lacking detailed
measurement and analysis about failure rate, software symptoms, occurrence patterns, etc [2, 22ś24, 32, 57]. To
this end, the current knowledge about CPU SDCs in the wild is limited.
In this paper, we investigate CPU SDCs in a large production CPU population, encompassing over one million

CPUs from hundreds of clusters in 28 data centers across 14 countries. To the best of our knowledge, this is the
irst work to quantitatively assess and systematically analyze CPU SDC phenomena in a large-scale production
environment. The main contributions of this paper can be summarized as follows:

• Assessing CPU SDCs in a large-scale production environment: We have conducted testing for CPU SDCs on over
one million processors over 32 months. In addition to providing the overall statistics of failure rate, we further
analyze how micro-architecture, the timing of testing, the processor lifetime, etc., afect the failure rate and
whether these failures afect a single core or all cores within the processor.
• Investigating software impacts of CPU SDCs: Through this study, we identify vulnerable features in the processors
(e.g., cache consistency, loating-point computation, and vector computation), and ind that, not surprisingly,
workloads that extensively engage such vulnerable features are likely to be afected. Moreover, we reveal the
deiciency of existing failure models. For example, for loating point calculations, we ind that CPU SDCs are
more likely to cause bitlips in the fractional part, which only cause a small loss of accuracy due to loating
point encoding [45] and thus render existing accuracy-based detection techniques less efective [30].
• Analyzing reproducibility of CPU SDCs: We ind that, on the one hand, some SDCs are highly reproducible,
which means, without proper mitigation, they will manifest frequently in production: this is conirmed by
Alibaba Cloud’s investigation of production failures caused by CPU SDCs. On the other hand, some CPU SDCs
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can only be triggered under speciic conditions (e.g., temperature, workload stress). Such observations motivate
our exploration of new SDC mitigation strategies, as discussed next.
• Assessing current mitigation practices for SDCs: We identify a substantial design space for improving existing
SDC testing by prioritizing testcases and developing testcases focused on multi-threading scenarios. Moreover,
we discuss the challenges that SDCs present to fault-tolerance techniques and SDC handling.
• Investigating implications of CPU SDCs. Inspired by our observations, we further provide 9 implications on
fault models, mitigation strategies and future research ields.
• Proposing a concrete approach for SDC mitigation. Based on the above observations, we propose an eicient SDC
mitigation approach called Farron. It relies on regular testing to identify those highly reproducible SDCs, and
improves the eiciency of this approach with testcase prioritization; it controls the temperature of processors
to minimize the occurrences of those less reproducible SDCs; it can further make a trade-of between these two
approaches by assigning longer testing time if a processor has to work under a high temperature for long. Our
evaluation shows that Farron can protect applications from CPU SDCs, with both higher SDC detection rate
and lower overhead compared to the baseline approach.

The rest of this paper is organized as follows: Section 2 describes our methodologies for the study, including
the targeted system, the toolchain for SDC detection, study methodologies as well as the real-world CPU SDC
cases that motivate us to conduct study on CPU SDCs. Section 3 describes the general existence pattern of
CPU SDCs, including the prevalence of processor faults and their breakdown from multiple perspectives, such
as micro-architecture and lifetime. Section 4 describes the software symptoms of CPU SDCs, including the
impacted workloads and the corruption patterns in the data. Section 5 describes the reproducibility of CPU
SDCs and the triggering conditions of errors, which provide the opportunities to mitigate CPU SDCs. Section 6
describes the limitation and the underlying causes of existing strategies against CPU SDCs. Section 7 describes
the implications of our indings to address CPU SDCs, including the advancement directions of fault models,
fault-tolerant strategies, and other directions for future research. Section 8 proposes a concrete approach named
Farron to illustrate how to leverage our observations to enhance SDC mitigation. Section 9 concludes this paper.

2 Motivation and Methodology

2.1 Target System

We study CPU SDCs in Alibaba Cloud, which involves hundreds of clusters deployed in 28 data centers worldwide.
Alibaba Cloud has provided a stable working environment for hardware, with a strong focus on cooling, power
distribution, and cable management, and environment variations are controlled to be minimal.
Our study includes over one million processors deployed since 2017. These processors are supplied by a

well-known international chip manufacturer. These processors cover a wide range of micro-architectures in
recent years, apply the advanced lithographic technology, and widely use the multi-core technology. We believe
our processors are able to represent the international mainstream.

2.2 CPU SDC Examples in Production

Over time, Alibaba Cloud has occasionally observed servers with a higher error rate compared to others. After
extensive debugging to identify the root cause, we ind the problems are due to processor defects. Here we present
some examples.
In one case, a storage application frequently reported checksum mismatch of the user data. After weeks of

debugging, we found that one processor in the leet was faulty and a checksum-calculation related instruction on
the processor gave wrong result intermittently.
In the second case, we also observed checksum mismatches, but our debugging revealed a diferent cause: A

client thread packed data and its checksum into a bufer, which was then shared with a daemon thread. Due to
defective cache coherence, the daemon thread sometimes got inconsistent data, incurring checksum mismatches.
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In another case, a program sometimes triggered assertion failures. We later found this is because the application
used a hash map to manage its metadata, and defective hashing calculation in a faulty processor afected its
metadata service.

These cases, particularly the concerns that some errors may not be detected by checksums, and similar reports
from industry [23, 32] have motivated us to conduct this study.

2.3 Toolchain

We use a toolchain provided by the chip manufacturer, which is designed to detect CPU SDCs related to cloud
workloads. The toolchain includes 633 testcases and a framework. The framework drives these testcases and
checks for the occurrence of CPU SDCs. According to a user’s speciication, the framework selects the testcases
to be performed and controls their execution order, resource allocation (such as CPU time and concurrency)
during testing, etc.
Testcases are programs that simulate cloud workloads, carefully crafted with consideration of both software

behaviors and hardware features. Most testcases focus on individual processor features, such as loating point
calculation, branch prediction, cache, interconnect between cores, etc. The complexity of these testcases vary
signiicantly: 1) Some execute a speciic instruction within a loop. 2) Some call functions in libraries. 3) Some
invoke application logics.
Moreover, we also try other toolchains designed for SDC detection like OpenDCDiag [17] as supplementary

and reach the same observations in our study.
In our study, this toolchain serves two roles. First, it provides an authoritative method to test processor functions.

Second, it acts as an impacted workload simulator when conducting in-depth study on faulty processors. To
facilitate testing and analysis, we have designed additional tools, which will be discussed in the corresponding
sections.
Despite the toolchain provided by the manufacturer, it is often not easy to determine whether a failed test is

due to a CPU SDC or other reasons (e.g., memory error), especially considering some failures are not reproducible.
Therefore, if we cannot determine the root cause with a reasonable amount of efort, we will send the suspected
processor back to the manufacturer. All the faulty processors reported in this paper have been conirmed by the
chip manufacturer.
On the other hand, like any testing techniques, the toolchain may not be complete to cover all CPU SDCs.

We did ind CPU SDCs that cannot be detected by this toolchain, after extensive debugging. Therefore, this
work should be considered a best-efort approach to detect and understand SDCs: both false negatives and false
positives are possible.

Since our toolchain is not publicly available, for those who are interested in this ield, we recommend OpenD-
CDiag [17] since we have validated that it can reach the same observations as our toolchain. Another similar tool
is SiliFuzz [57], but we haven’t got the chance to try it.

2.4 Study Process and Approaches

Factory 

delivery

Datacenter 

delivery

Re-

installation

Regular 

tests

Pre-production tests

Fig. 1. Test timings in our fleet.

We carry out large-scale tests in order to ind faulty processors
in Alibaba Cloud, both before production and during production.
As shown in Figure 1, pre-production testing is carried out 1)
after factory delivery (after manufactured chip is shipped to
Alibaba Cloud), 2) after datacenter delivery, and 3) after system
re-installation (before a machine goes into production, it needs to install a new system for its service). Then in
production, machines will be regularly tested in groups. Testing for each group lasts about 2 weeks, and testing
for the whole leet needs months.
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In these large-scale tests, we execute all the testcases in the toolchain sequentially, and each testcase is allocated
with equal test duration speciied by the administrator. We started such tests since January 2021, and so far, we
have found hundreds of faulty processors.

3 CPU SDCs in the Wild

3.1 Brief Overview of Test Results

Observation 1. In general, 3.61➌ of the CPUs are identiied to cause SDCs in our study.

Our results are consistent with but are more precise than those reported by Google (łthe order of a fewmercurial
cores per several thousand machinesž [32]) and Meta (łhundreds of CPUs detected for SDCs in hundreds of
thousands of machinesž [23]). Google’s and Meta’s decisions to not disclose exact numbers may be for business
considerations. This observation substantiates the notion that CPU SDCs represent a pervasive issue rather than
a łblack swanž event, especially in the cluster with a signiicant number of processors.

Observation 2. The failure rates observed during the pre-production testing period and the regular testing
period amount to 3.262➌ and 0.348➌, respectively.

As shown in Table 1, 3.262➌ of processors are detected to cause SDCs in pre-production tests, accounting for
a signiicant proportion (90.36%) of all faulty processors we have identiied. This means pre-production testing is
indispensable since it prevents many faulty processors from entering into our production environment. 0.348➌
of CPUs are detected to cause SDCs in regular testing. These faulty processors have passed pre-production tests
and some have even passed several rounds of regular tests.

Factory Datacenter Re-install Regular Total

0.78➌ 0.18➌ 2.31➌ 0.35➌ 3.61➌
Table 1. Failure rate of diferent test timings.

However, despite all SDC tests, we still encounter
CPU SDC issues that afect Alibaba Cloud services
as discussed in Section 2.2. This can be attributed to
the window between regular SDC tests and the non-
determinism of reproducing CPU SDCs. Addressing

this issue is challenging, as it is not feasible to perform regular SDC tests frequently. As a result, services requiring
high reliability may need to take CPU SDC tolerance into consideration.

Observation 3. CPU SDCs have been identiied across all micro-architectures present within Alibaba Cloud
leet. The failure rate does not decrease with newer chips.

Arch M1 M2 M3 M4 M5 M6 M7 M8 M9 avg

Rate 4.62➌ 0.35➌ 2.65➌ 0.08➌ 0.76➌ 3.25➌ 1.60➌ 9.29➌ 4.65➌ 3.61➌
Table 2. Failure rate of diferent micro-architectures M1-9 denotes anonymous micro-architectures

.We have found faulty processors in every micro-architecture we have, indicating CPU SDC is a general problem
for modern processors. We have tested hundreds of thousands of samples for each of these micro-architectures.
As shown in Table 2, the failure rates of diferent micro-architectures range from 0.082➌ to 9.29➌. It is worth
mentioning that we also ind faults with micro-architectures diferent from those listed in Table 2, but these faults
cannot reach a statistical conclusion due to their limited scale.

In our tests, the failure rate does not decrease with newer chips. This phenomenon can be attributed to multiple
factors. The testing ability may increase with the processor development, but the diiculty of testing also increases,
as features and circuits become more complex with the processor development. In fact, due to the complex
micro-architecture diagram, comprehensive testing for the chip has prohibitive costs and makes faulty processors
escaping from high-volume manufacturing testing a fact of life [58]. Moreover, diferent micro-architectures have
diferent degrees of maturity, which also afects their failure rates.
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CPU id arch age(Y) #pcore #err SDC type impacted workloads impacted datatypes

MIX1 M2 1.75 16 25 computation

matrix calculation;
checksum calculation;
string manipulation;
large integer arithmetic;

int32; unint32;
loat32; loat64;
byte; bin16; bin32;

MIX2 M2 0.92 16 24 computation
matrix calculation;
checksum calculation;
bit operations; hashing;

int16; int32; unint32;
loat32; loat64;
bit; byte; bin16; bin32;

MIX3 M3 ś 24 94 computation
matrix calculation;
checksum calculation;
loating-point computing; encryption;

loat32; loat64; loat64x
int8; int32; int64;
bit; byte;

SIMD1 M2 2.33 1 5 computation matrix calculation; loat32
SIMD2 M5 0.50 1 1 computation matrix calculation; loat64;

FPU1 M5 0.58 1 3 computation
loating-point computing;
mathematical function;

loat64; loat64x;

FPU2 M5 1.83 1 3 computation
loating-point computing;
mathematical function;

loat64; loat64x;

FPU3 M3 3.08 1 2 computation loating-point computing; loat64;
FPU4 M6 1.62 1 1 computation loating-point computing; loat64;

CNST1 M2 0.92 1 9 consistency
multi-thread lock;
transactional memory

ś

CNST2 M3 1.08 24 8 consistency transactional memory; ś

Table 3. Details of a subset of our faulty processors , each line represents an individual faulty processor (#pcore denotes the
number of defective physical cores on the faulty processor; #err is the number of failed testcases on the faulty processor).

Despite extensive testing and the advancements in chip development, online services continue to be exposed
to potential risks stemming from CPU SDCs. This highlights the essential requirement of SDC-tolerant systems
for cloud vendors to enhance the reliability of their services.

3.2 Zooming in on Faulty Processors

Table 3 shows the hardware details and error information of a subset of our faulty processors as examples. We
make the following observation by studying these faulty processors:

Observation 4. A single processor fault may exert its inluence on an individual physical core or encompass all
cores within the processor.

In about half of the faulty processors, there exists only one defective physical core. This is probably because in
these faulty processors, the defects occur in the components that belong to a single physical core, like arithmetic
units. Note that multiple hardware threads, also known as logical cores, can share a single physical core. In most
cases, all the logical cores sharing the same defective physical core are afected.

In the other half of the faulty processors, defects impact all physical cores. Some are probably due to the fact
that the defects occur in the components shared by all cores, like CPU cache. However, we do observe cases that
a defect impacts the same non-shared component of every core (e.g., MIX1 and MIX2 in Table 3). These cores fail
the same testcases but at a diferent frequency. The diference can be up to several orders of magnitude with the
same allocation of testing resources, making some of the defective cores diicult to be detected. We presume
this phenomenon may come from defects in chip design and manufacturing. The proportion of processors with
multiple defective cores in our study (i.e., about half) is signiicantly higher than what has been reported by
Google [57], where a single processor with multiple defective cores is considered a low-probability event. We
hypothesize that such diference is primarily due to the fact that we use a diferent toolchain, and our toolchain
appears to have better detection capabilities for coherency problems among cores.

Observation 5. Processor faults that occur before the third year of deployment contribute the majority of CPU
SDCs in the production environment, revealing two necessary root causes of CPU SDCs: device faults (e.g., logic bugs
and manufacturing defects), and in-ield faults (e.g., transistor weakness and wearing out).
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We record the detection age of each faulty processor, namely the duration between the deployment of the
processor and the identiication of the fault. Faulty processors found during factory-delivery tests or datacenter-
delivery tests are assigned a detection age of zero, as their faults occur before the deployment. We collect 80 faulty
processors to demonstrate the detection age in the working life of processors, with 50 of them are identiied
during re-installation tests. Figure 2 shows the cumulative distribution of faulty processors over their lifetimes.
We suspect faults that occur before the deployment of the processor are device faults, such as logic bugs

and manufacturing defects [40, 58]. These device faults cannot be eliminated absolutely before entering the
production sincemodern processors have billions of transistors and various working conditions, posing a challenge
to comprehensive testing [16]. For example, under a lower working voltage coniguration, the circuit paths in the
processors may become more sensitive to noise and consequently become less reliable, which introduces corner
cases that fail to be stably detected by the manufacturing testing [59].

0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

C
D
F

Detection age (year)
Fig. 2. CDF of faulty processors.

The detection age of other faults spreads across the whole
working life of processors. These faults occur after processors
being deployed, which are also known as in-ield faults [23]. For
example, bias temperature instability (BTI) gradually degrades
the reliability of transistors under the workload stress [39]. We
observe that 93.75% of these in-ield faults occur in the irst three
years of deployment. This trend follows the utilization pattern of
Alibaba Cloud: Processors mainly carry on workloads in the irst
three years, and from then on, workloads on processors gradually
decrease. We also observe that many faulty processors can be
detected in the irst few weeks after their deployment, which
align with existing researches [64]. Besides, we observe that few

processor faults are detected after the fourth year. This is because processors in the production environment are
gradually decommissioned as they reach the end-of-life phase (i.e., about ive years after the deployment), leading
to a reduced incidence of detected faulty processors. For the same reason, faults occurring in the end-of-life phase
have a minor efect on production services.
The discrimination of device faults and in-ield faults helps explain the phenomenon that the re-installation

test holds the highest failure rate among test timings, as shown in Table 1. Firstly, since checks after factory
delivery and datacenter delivery are undertaken before processors being deployed, they mainly detect device
faults. However, they can detect a limited number of processor faults since chip manufacturers have conducted
the similar tests. Secondly, re-installation tests and regular tests are undertaken after processors being deployed,
which means they can capture in-ield fault. Since re-installation tests are conducted oline and have more testing
resources than online regular tests, re-installation tests become more efective than regular tests.

4 Sotware Symptoms of CPU SDCs

4.1 Impacted Workloads

Observation 6. CPU SDCs exhibit a substantial prevalence in particular workloads, exposing ive vulnerable
features, namely arithmetic logic computation, vector operations, loating point calculation, cache coherency and
transactional memory.

This observation can be explained by two contradictory theories: On the one hand, it is possible that, compared
to other features, these features are indeed more vulnerable due to their complexity (e.g., cache is known to
occupy a big portion of the chip area [52]). On the other hand, it is also possible that other features are equally or
even more vulnerable, but since operating systems and applications make use of other features heavily, a fault in
other features will cause a crash instead of a CPU SDC [52]. Alternatively, defects of other features can be easily
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identiied during HVM testing of the chip manufacturer, and consequently can be eliminated before our testing.
Either way, this observation suggests that a developer can focus on a limited set of features when considering
issues related to CPU SDCs.
Figure 4 shows the proportion of faulty processors per feature. Note that the sum of these proportions is

bigger than 1. This is because a defect can occur on shared or integrated components of multiple features and
thus some processors can encounter errors among multiple features. For example, we ind Processor MIX1 has
wrong execution results in both vector operations and complicated loating-point calculation, and we blame this
problem on the combination of FPU functionalities with vector units. Another example is CNST1, which fails to
guarantee the consistency in both cache and transactional memory.

We further categorize CPU SDCs with defective features into two types: computation and consistency. SDCs
with computation type are due to defective arithmetic operations, including arithmetic logic computation, vector
operations and loating point calculation. SDCs with consistency type are due to defective features related to
consistency guarantee, such as cache coherency and transactional memory. We distinguish these two types for
two reasons: First, they require diferent testing strategies since SDCs with consistency type can only be detected
with multi-threaded tests. Second, we observe that, if one processor has multiple defective features, they always
belong to one type. Among the 30 faulty processors we have tested extensively, 21 processors produce SDCs with
computation type and the remaining ones produce SDCs with consistency type.
Since each testcase is designed to mimic a real-world workload, we can further speculate potential impacts

on real-world workloads, as sampled in Table 3. For example, Processor FPU1 produces incorrect results on a
speciic loating-point calculation operation, which is used by a library widely used in HPC applications. The
wide impacts of certain CPU SDCs are due to the wide usage of these defective features.

We have tried to further pinpoint which instructions are problematic, which turns out to be a challenging
task. For some of these errors, the toolchain preserves the context and points out the incorrect instructions. For
example, in SIMD1, the toolchain reports that a vector instruction that performs multiplication and addition
operations simultaneously gives wrong results. The others, however, need manual investigation, but we meet the
classic problem that, since these errors are often hard to reproduce, it is unclear where to modify the testcases to
print more information. Therefore, we turn to a statistical approach: we instrument the toolchain to catch the
number of times each type of instruction is executed during each testcase via Pin [43]. This method helps us
narrow down the scope of suspected instructions. Take cases in Table 3 as examples: we ind one instruction,
which uses the loating-point calculation feature to calculate a complex math function (arctangent), is a suspect in
FPU1 and FPU2, because all the testcases using this instruction could reproduce SDCs and all the other testcases
can pass. In another example, we ind instructions responsible for managing the transactional region a suspect in
CNST2.
However, not all errors have obvious suspected instructions. The SDCs in CNST1 causes cache coherence

issues and we fail to locate the suspected instructions. This is reasonable since cache coherence mechanisms are
mostly hidden from a program so a program often does not invoke a speciic instruction for cache coherence.

It should be noted that not all testcases executing a defective instruction will generate errors. For example, in
MIX1, we ind a defective instruction is used in seven testcases, but only two of them generate errors. We study
the triggering conditions in details in Observation 13.

Observation 7. CPU SDCs do not exist in isolation Ð processors that produce SDCs can lead to crashes
simultaneously.

In some faulty processors, crashes co-occur with SDCs. In other words, some faulty processors can manifest
SDCs and, at times, may also experience crashes.
For example, in MIX3, we collect 7205 errors and 16.09% of them are crashes. Figure 3 shows the breakdown

of part afected testcases in MIX3. We observe that the proportion of crashes varies across diferent testcases.
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Testcase C exhibits the highest crash proportion (59.57%) among all afected testcases. This testcase applies the
loat64 data type to intensive computational stress. 91.29% of these crashes are caused by the aborts, where
violations of certain checks or assertions in applications or operating systems trigger the system signal that
terminates the testing process. Other crashes have multiple reasons, including time out, segmentation fault and
illegal instruction.

M
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(bit)
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We further conduct a case study to igure out these crashes.
In one of CPU SDC cases, we identify a hash instruction inter-
mittently giving wrong results, while we also ind the operating
system kernel takes advantage of this instruction, and this fault
will lead to both system crashes and data corruptions.

In fact, a single micro-architecture can exhibit hundreds of
logic bugs after its release, and chip manufacturing cannot avoid
defects. Many of these processor faults can lead to unpredictable
behaviors, including crashes and data corruptions [16]. A single
fault introduces diferent errors among applications Ð some ap-

plications manifest SDCs, while others experience crashes. An application may not always experience one of
unpredictable behaviors with each execution. Consequently, in the production environment, crashes and CPU
SDCs occur in a mixed style.

4.2 Error Breakdown in Mis-Calculated Data

We further study the properties of computation SDCs to understand the inluence of defective features on the
workload results. We exclude consistency SDCs from this investigation since they do not have a deterministic
pattern.

Observation 8. CPU SDCs have been conirmed to afect operations on all tested data types, including integers,
loating-point numbers, bytes, andmore. Notably, operations related to loating-point numbers demonstrate heightened
vulnerability to CPU SDCs.

Table 3 shows the impacted data types in a subset of our faulty processors. We ind these impacted data types
cover a wide range, including both numeric data types (e.g., integer, unsigned integer, single- and double precision
loating-point numbers, extended double precision loating-point numbers (loat64x)), and non-numerical data
types (ranging from 1bit to quad word (64bit)). Figure 5 shows the proportion of faulty processors involving
each data type. We ind all data types under tests are impacted by CPU SDCs, and loating-point data types
involve more faulty processors than other data types. We ind two reasons attribute to this issue: Many diferent
vulnerable features are related to loating-point calculation, including vector operations with loating-point data
types and speciic loating-point calculation. Some loating-point operations, such as trigonometric functions, are
complex, which increases the diiculty on the design and test of relevant processor features.
In some faulty processors, the CPU SDCs involve almost all the aforementioned types, such as MIX1 and

MIX2. This is because the operations related to their defective features involve multiple data types. In other
faulty processors, CPU SDCs only involve one ixed data type. For example, FPU3 only involves double-precision
loating-point numbers, and SIMD1 only involves single-precision loating-point numbers.

Observation 9. Diferent processor faults lead to distinct bitlip distributions, which can be categorized as four
types: center-gathered, end-gathered, speciic-bits, and uniform.

To investigate the inluence of processor faults on corrupted data, we analyze the bitlip distribution for
each setting (i.e., a combination of a testcase and a faulty processor). Figure 6 present a sampling of the bitlip
distribution across some settings, each involving hundreds of CPU SDC records. We observe the variation in
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bitlip distributions across diferent settings, which indicates that CPU SDCs are related to multiple types of
processor faults. Certain distributions conirm previous bitlip distribution of processor faults. Besides, software
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factors can also afect the bitlip distribution in some cases. We summarize four typical bitlip distributions and
analyze the reasons behind them.

End-gathered. In Figures 6(a)-6(d), we observe that bitlips tend to occur at lower signiicant bits. This pattern
can be explained by two factors. Firstly, this pattern aligns with previous studies of the timing errors [59],
where bitlips are more prevalent in lower signiicant bits and gradually decrease towards higher signiicant
bits, as illustrated in Figures 6(a) and 6(d). Secondly, diferences in processing complexity also contribute to this
phenomenon. For example, according to the IEEE-754 loating point encoding standard [45], lower signiicant bits
belong to fraction part which has a higher processing complexity than sign and exponent parts. A case of double
loating-point numbers in Figure 6(c) further reveals bits of the same type (either sign, exponent or fraction) tend
to share a similar bitlip likelihood.

Center-gathered. In Figures 6(e)-6(h), we observe bitlips gather in the central region of the data and decrease
gradually towards two sides. This pattern aligns with previous studies on failure distribution in registers [52],
which shows a higher failure potential for bits in the central region.

Speciic-bits. In Figures 6(i)-6(l), we observe that bitlips predominantly occur on speciic bits. This could
potentially be attributed to the speciic manufacturing defects, which can only afect a speciic bit [40].
Uniform. In Figures 6(m)-6(p), we observe that bitlips nearly uniformly distribute across all bits. This phe-

nomenon can be attributed to three factors. Firstly, as shown in Figure 6(m), some workloads, such as hashing
and checksum computations, can produce signiicantly diferent outputs even for minor variations in input or
intermediate data. Consequently, all bits of outputs are simultaneously afected by a single processor fault in
these workloads, incurring the uniform distribution. Secondly, as shown in Figure 6(n), the processor fault can
incur all bits of the outputs to either zero or one. Given the random inputs, each bit has a similar likelihood to
lip. Thirdly, some instructions set the same value to each bit, which leads to a uniform distribution. For example,
as samples shown in Figures 6(o) and 6(p), an instruction, which is designed to compare data from two strings, is
afected by the CPU SDC. Under some conditions, it sets all bits within a byte to the same value, which leads a
uniformly distributed bitlips.
We also observe the correlation between bitlip pattern and faulty processor as well as the testcase by only

changing one of them. Some bitlip distributions is only related to the faulty processor, regardless of the testcases.
For example, Figures 6(a) and 6(b) share the same processor and have a similar bitlip pattern, which also prove
such bitlip distributions are only attributed to processor fault rather than software factors. As for the bitlip
distributions with the same testcase but diferent faulty processors, multiple factors can impact the results. For
example, Figures 6(e) and 6(f) involve diferent faulty processors but share the same testcase while they have
the similar bitlip distributions. We later ind their faulty processors have the same micro-architectures, and the
similarity of their bitlip distributions indicate a general challenge of this micro-architectures. In Figures 6(n)
and 6(k), bitlip distributions are completely diferent, revealing a single processor feature may be susceptible to
multiple types of processor faults.

Observation 10. Some bitlips are position-correlated, i.e. in some settings diferent inputs manifest bitlips at
several ixed positions.

For CPU SDCs with speciic-bits distribution, it is conceivable that the positions of bitlips remain ixed. We also
observe such phenomenon, i.e. multiple records with completely diferent input share the same bitlip positions, in
CPU SDCs of other types of bitlip distributions, which motivates us to further explore these position-correlated
bitlips.
We deine the position-correlated bitlips as the phenomenon that bitlip(s) occur at a ixed set of positions

with whatever inputs in a given setting. For example, in Figure 6(i), all SDCs under the given setting have one
bitlip that occur at the least signiicant bit, and we regard this as an instance of position-correlated bitlips. One
potential explanation for position-correlated bitlips is that the hardware defect of speciic faulty processor causes
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deterministic inluence and thus these bitlips tend to occur at ixed position(s). To explore position-correlated
bitlips, we use the mask, i.e., the exclusive-or value of the expected result and the actual result, to represent the
bitlip positions. If more than 5% of the SDC records of a setting have the same mask, we regard this mask as an
instance of position-correlated bitlips.
A setting could have multiple instances of position-correlated bitlips in our observations. We suspect it is

because the multiple instructions in the testcase are impacted by the defect and these instructions fail to stably
reproduce errors (i.e., in one run of a testcase, some of them fail but others succeed), which causes diferent
combinations of error instructions to generate diferent instances of position-correlated bitlips. Figure 7 shows
the proportion of SDC records with position-correlated bitlips in some settings. We observe the phenomenon
of position-correlated bitlips is not limited in settings with speciic-bit distribution. For example, CPU SDCs
under the setting of testcase J and FPU2 follow the center-gathered distribution while 85.57% of them belong
to instances of position-correlated bitlips. We also observe 59.46% settings in this igure have more than half
their SDCs belong to instances of position-correlated bitlips. Such observation reveals that the phenomenon of
position-correlated bitlips can serve as a łside channelž of CPU SDCs, namely if multiple errors in the system
were logged with the same bitlip positions, the leet of the system would be suspected to contain a CPU SDC.

We further analyze the number of lipped bits within SDCs belonging to some instances of position-correlated
bitlips across diferent data types in Figure 8. As shown in this igure, in most cases, only one bitlip, but there is
also a considerable number of SDCs with two or even more lipped bits. Our analysis does not include CPU SDCs
that do not belong to any bitlip patterns, as many of these SDCs have been propagated, where a single SDC
record contains multiple bitlips are becoming increasingly common.

Observation 11. For loating-point numbers, bitlips predominantly occur in the fractional part, resulting in
minor precision losses.

Given the fact that some data types follow speciic encoding standards, the role of each bit difers, which
consequently leads to speciic inluence on the value of these data types, especially loating-point data types.

Figures 9(a)-9(d) shows the bitlips of diferent numerical data types. We ind that it is rare that bitlips occur in
the most signiicant bits. This bitlip pattern does not apply to non-numerical data, where all positions have a
comparable proportion of bitlips (Figures 10(a)and 10(b)).

Furthermore, we ind that nearly half (51.08%) of bitlips are changed from zero to one, which means there is no
tendency of bitlip direction in general. However, a tendency exists in some corner cases. For example, in 16-bit
integer data within MIX1, the statistics of bitlips are skewed, with 72.27% of bitlips manifesting as transitions
from zero to one. For example, as for 16-bit integer data statistics in MIX1, 72.27% of bitlips are from zero to one.
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The impact of a CPU SDC on a numerical data depends
on the type of the data. A bitlip usually hits the fractional
part, probably due to two reasons. Firstly, as for loating-
point numbers, the computation logic of the fractional part
is more complex than that of the exponent part, making
the fractional part more vulnerable. Secondly, given the
relatively long fractional part in the data, bitlips that follow
the center-gathered or end-gathered distribution tend to
occur in this part. Because IEEE-754 assumes an implicit
leading 1 in the fraction, the relative precision loss caused

by one bitlip in fraction only depends on the position of the bit but does not depend on the value of the number.
Other data types do not have this property. For example, for an integer, if its value is small, then a bitlip in a less
signiicant bit can still cause a signiicant precision loss.

We show the relative precision losses between expected data and actual data in Figures 9(e)- 9(h). Notably, few
of CPU SDC instances result in a NaN (Not a Number) corruption, which is regarded as 100% precision losses.
Since the bitlips we observed mostly occur in the fraction bits, the precision losses of loating-point data types
are small. For example, 95% of the precision losses on extended double precision (80bit) loating-point numbers
are less than 0.002%. 97.5% of the precision losses on double precision (64bit) loating-point numbers are less than
0.01%. half of the precision losses on single precision (32bit) loating-point numbers are less than 2.7%. On the
other side, 35.37% of the precision losses on 32-bit integer data are bigger than 100%. This phenomenon (i.e., data
corruptions of loating-point numbers have minor precision losses) can be more extreme when we only regard
to a single faulty processor. For example, in each faulty processor where bitlips of extended double precision
loating-point numbers follow the center-gathered distribution, all the precision losses on this data type are less
than 0.002%.

5 Reproducibility of CPU SDCs

After we identify that a CPU can fail in a testcase, we repeatedly run the failed testcase to understand the
reproducibility of the problem. Since the length (i.e., number of loops) of each testcase is conigurable and the
chance of triggering an error depends on the length of the testcase, we use occurrence frequency, which is deined
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as the number of errors per minute, to quantitatively measure reproducibility. Since the occurrence frequency
depends on both the CPU and the workload (i.e., testcase), we record the occurrence frequency per setting.

Observation 12. Some CPU SDCs are highly reproducible, resulting in large impact on applications.

We ind that occurrence frequency of CPU SDCs varies signiicantly across diferent settings, from as low
as 0.01 times per minute to as high as hundreds of times per minute. In 51.2% of the settings, the occurrence
frequency is higher than once per minute.
The high reproducibility of certain SDCs and the fact that existing systems are not designed to tolerate CPU

SDCs mean that these SDCs can manifest quickly and repeatedly in production, which is conirmed by our
case studies in production environment: a service in Alibaba Cloud falsely reported 26 invalid-data errors in
approximately 4.5 hours because of one faulty processor, which impacted the system performance. This suggests
that, although the failure rate of processors is low, CPU SDCs could potentially have a large impact, especially if
they are not detected promptly.

Observation 13. Among those less reproducible SDCs, temperature serves as an important SDC triggering
condition. In some settings, the occurrence frequency of CPU SDCs demonstrates exponential growth in response
to increasing temperatures. Furthermore, the occurrence frequency is associated with the minimum triggering
temperature across diferent faulty processors and workloads.

It is well-known that temperature impacts the functioning of semiconductors [35, 65]. Processors have allowable
range for their working temperature, and datacenters strive to minimize temperature inluence through cooling
systems. However, we observe that even when temperature remains within the allowable range during workload
execution, the rising temperature can still increase the occurrence frequency of CPU SDCs.

We investigate the quantitative relationship between SDC occurrence frequency and temperature. We monitor
the processor temperature during testcase execution by reading cooling device monitor data from system kernel
ile. Some settings can naturally reach a temperature that is close to the upper bound of the processor’s working
temperature, which allows us to collect adequate testcase execution information with diferent temperatures. Some
settings cannot reach a high temperature naturally. For these settings, before testing, we use stress toolchains
(e.g., Linux łstressž cmd tool) to preheat the processor to the desired temperature.

By taking the base-10 logarithm value of the SDC occurrence frequency, we ind that this value has a linear
dependence on core temperature, based on the least square method, on six out of our 27 processors.

Figures 11(a)- 11(c) display this relation for some faulty processors, and their Pearson correlation coeicients are
bigger than 0.75, which conirm the exponential correlation between temperature and SDC occurrence frequency.

Furthermore, we observe that in some settings, SDCs only occur when the temperature exceeds some threshold.
For example, we observe all the SDC records with testcase C on MIX1 are generated with their temperature
above 59℃, which is much higher than its idle temperature (about 45℃), but is still within the normal range. Tests
below this temperature threshold have been extensively conducted for several days, but cannot reproduce errors.

In our large-scale tests, we experience several counter-intuitive cases caused by temperature issues:
• Other core behaviors: We observe one defective core only produces errors when other cores are busy, with its
occurrence frequency increasing as the number of busy cores increases. It is surprising because the defective
component is not shared between cores. Upon further investigation, we discover that the cores share cooling
devices, which results in the defective core reaching a higher temperature when other cores are busy.
• Remaining heat: We observe one faulty processor generates errors depending on the test order. For example,
errors in testcase Y occur when testcase X is executed prior to testcase Y, and fail to occur with reversed test
order. We later discover that testcase X exerts signiicant stress on the processor and produces considerable
amount of heat, resulting in testcase Y being tested at a temperature that is diicult to attain when solely
executing testcase Y.
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• Toolchain update. We observe that after updating to use a higher version of the detection toolchain, the
occurrence frequency of some SDCs in a faulty processor decreased, which was surprising as the update did not
modify the logic of the testcases and we had not changed any other test coniguration. Further investigation
revealed that the updated toolchain uses a more eicient framework, which reduced the heat generated.
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Fig. 11. SDC occurrence frequency (log scale) variation with temperature.

Besides temperature, there also exist other triggering conditions. Recall that we have observed that many
testcases do not exhibit errors even when they utilize instructions identiied as defective or suspected as discussed
in Section 4.1. Our run-time instrument study further reveals that instruction usage stress is one of the reasons
behind this observation. Failed testcases use this defective instruction several orders of magnitude more frequently
than other testcases, highlighting the impact of instruction usage stress on error occurrence. Since temperature is
highly correlated with stress, we use the following method to separate their efects: we use stress toolchain on
some cores that are not under test while execute test workloads on target cores. In this experiment, since the heat
is mainly produced by stress toolchain and dissipated by cooling devices, the tested workload has little impact
on temperature. With this approach, we can increase CPU utilization in the faulty processor, with temperature
almost unchanged, and we observe a higher occurrence frequency of SDCs with a high CPU utilization. And
the occurrence frequency of the error decreases when we reduce CPU utilization (with adequate test duration).
We presume this stress impacts the electronic working environment of some transistors, such as temperature
and voltage, which in turn impacts their functions [58, 65]. Consequently, we consider workload operations that
intensively utilize vulnerable features as susceptible.

SDC mitigation using multiple strategies. We further explore the design space to mitigate SDCs by combining
multiple strategies in a coordinated and complementary manner. Figure 12 illustrates the relationship between
the minimum triggering temperature for SDCs and their occurrence frequency under the minimum triggering
temperature. We perform a linear it between the logarithmic values of occurrence frequency and the values of
minimum triggering temperature, yielding a Pearson correlation coeicient of -0.8272, which indicates a relatively
strong correlation.
Motivated by this igure, we classify SDCs into two types based on the occurrence frequency and minimum

triggering temperature: apparent and tricky. Diferent types of SDCs are suitable for diferent mitigation strategies.
łApparentž SDCs can be detected near idle temperature and exhibit high occurrence frequency, making them
suitable for SDC tests.
On the other hand, łtrickyž SDCs have higher minimum triggering temperature than łapparentž SDCs and

tend to have relatively low occurrence frequency. For these SDCs, relying solely on SDC testing would require
maintaining processors at high temperatures for a long time, which can be detrimental to processor health. Even
worse, since we do not know whether a CPU has such tricky SDCs in the irst place, we will need to apply
such long high-temperature testing to all CPUs, which is ineicient. Additionally, we observe there are faulty
processors where all SDCs require relatively high temperatures. In these cases, SDC testing becomes especially
ineicient since it is diicult to identify the processor as faulty in the irst place.
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minimum triggering temperature of diferent SDCs.
Each point in the figure stands for a SDC seting.

Instead of testing, we propose to control the CPU temperature
at run time to mitigate łtrickyž SDCs. Related works indicate
that the workload temperature on a server is lower than a
speciic threshold in production environments, which is far
below the maximumworking temperature of the processors [48,
60]. In another words, workloads do not meet the triggering
conditions of some łtrickyž SDCs, reducing the need for testing
of speciic CPU SDCs. As for the occasional conditions with
high-temperature, these SDCs can be mitigated by controlling
the temperature. We can control the CPU temperature by either
controlling the cooling devices [31] or by limiting the CPU
utilization of the workloads (called łworkload backofž in the
rest of this paper). The former has no impact on application performance, but unfortunately it is not widely
applicable in Alibaba Cloud yet, so this work explores the latter. Workload backof can also reduce instruction
usage stress, known as another triggering condition. Section 8.1 presents how to apply this idea in detail, in
particular how to adaptively adjust the temperature threshold and test duration.

6 Performance of Existing Strategies

6.1 Proactive SDC Testing

Many cloud vendors, such as Alibaba Cloud, Meta [22] and Google [57], conduct SDC tests to remove faulty
processors before SDC generation. However, testing for CPU SDCs can be ineicient without guidance.

Observation 14. In a production environment with tens of thousands of CPUs, 560 out of the 633 testcases have
not detected any errors.

Unfortunately, we only have detailed test logs for a subset of the CPUs we have tested (for others, we only
know whether the CPU is identiied as faulty or not), but we believe they can shed light on how to improve test
eiciency.
In this production environment, although we allocate the same test resources to all testcases, 560 of the 633

testcases fail to detect any faults. We verify that about several tens of testcases can detect faults with more testing
resource, which exceed the sustainability of production environments, but still remain failed to verify the testing
ability of other hundreds of testcases. This motivates our following proposal to prioritize tests, considering
companies like chip manufacturers and cloud vendors may have a large amount of history data to guide testing:
in pre-production tests, since test resources are adequate, every testcase can be fully tested; in regular tests,
during which test resources are limited, we can give longer duration to testcases that have found SDCs.
Additionally, determining the best testcase for detection is challenging. Since detection performance varies

across diferent faulty processors, a testcase can be efective in one processor but inefective in another. For
instance, while testcase C outperforms testcase M in one micro-architecture, the opposite holds true in another.
On the other hand, there exist cases where our toolchain fails to detect faults. We observe that these faulty

processors only manifest SDCs under some complex multi-thread conlict scenarios that are diicult to be covered
with existing testcases. We believe these issues will be addressed in the future with more comprehensive and
powerful testcases contributed by both academia and industry.

6.2 SDC Detection, Tolerance, and Handling

Unlike SDC testing, which performs proactive detection before SDC generation, there exist many approaches to
detect corruptions after error generation.
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Observation 15. The efectiveness of existing fault tolerance techniques is diminished when confronted with
CPU SDCs.

Checksum and parity. End-to-end checks are widely used to detect data corruptions and verify data integrity
in the datapath [24, 53, 62, 68]. For example, checksum calculation algorithms, such as Cyclic Redundancy Check
(CRC) and hashing, derive the data to a smaller summary, which can be used to check the integrity of the original
data. End-to-end check techniques are widely applied in software workloads [24, 62, 68], and they are equally
applicable in irmware programs [53]. Erasure Coding (EC) techniques are software techniques that apply parity
information to recover transferred or stored data when they are lost [33, 56]. Error Correcting Code (ECC) can
detect and correct errors in processor cache and registers by leveraging parity bits [15, 47]. These ECC techniques
are integrated in hardware circuits of processors, thereby becoming transparent to software operations.

However, we observe these techniques are often inefective to detect CPU SDCs due to multiple reasons: 1) EC
is primarily used to recover lost data, but not used to detect corrupted data. 2) ECC and CRC assume the data is
correct when computing the parity and afterwards can detect bitlips in either the data or the parity bits, but CPU
SDCs may generate a wrong result before parity is computed and in this case these techniques may generate a
parity that matches with the already corrupted data. 3) Even if the corruption happens after parity is generated,
standard ECC used in processor can correct only single bitlip errors and detect two bitlip errors, but our study
shows multiple bitlip errors are possible (Observation 10).
Even worse, some of these checksum algorithms engage vulnerable features heavily, which means they are

more vulnerable to CPU SDCs. For example, both EC and CRC heavily involve vector operations [18, 20], which
is one of the vulnerable features (Observation 6), to accelerate computation. For EC, this is particularly dangerous
since EC itself does not have the ability to detect corruptions, and thus a corrupted data block may be used to
construct a lost data block, causing the corruption to propagate.

Redundancy. Some works apply redundancy to detect and tolerate corruptions occur in the either computational
process or stored data [9, 10, 13, 26, 27, 38, 50, 62, 69]: they execute the same logic on multiple replicas and
compare their results to detect and even correct errors. Redundancy techniques are widely applied in software
workloads [26, 69], and they can also be implemented by the hardware, such as the DCLS (dual-core lockstep)
technique [19]. Redundancy techniques can tolerate CPU SDCs. However, considering the low failure rate of
CPUs, such kind of techniques are too costly to be applied to every application, though they may be suitable for
a small number of critical applications.
Ad-hoc. Several strategies are designed for protecting speciic operations, such as algorithm-based fault

tolerance (ABFT) and residue codes [1, 6, 8, 12, 34, 49]. The core idea of these strategies is to utilize certain
relation within data (e.g., linear dependence) which should hold during the execution of operations. Upon an
error occur, they can detect the error by checking the relation within data. Such techniques can be applied in
both software [8, 34] and hardware [1].
Such ad-hoc techniques can dramatically reduce detection overhead, especially compared with redundancy

techniques. However, their practical application is limited by the issue of łnon-universalityž. For example, residue
codes are designed for integer computation, and fail to protect loating-point computation [49]. Additionally,
most of ABFT techniques are designed for algorithms used in high-performance computing (HPC) scenarios,
such as ordinary diferential equations and bitonic sort, and there remains a necessity to extend protection to the
other operations susceptible to CPU SDCs.
Prediction. Some works use machine learning models to predict the appearances of corruptions [5, 7, 21, 41,

42, 66, 67]. These techniques are usually deployed in software workloads. Part of them predict a range for the
result and assert a silent error when the real result is out of this range [5, 7, 21]. However, CPU SDCs may have
minor precision losses (Observation 11), making it challenging for these methods to determine a narrow range
for detecting CPU SDCs. On the other hand, whether such minor losses are acceptable is a topic requiring further
investigation.
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On the other hand, our study shows some new opportunities to detect and tolerate CPU SDCs: Considering only
a small number of features or instructions are vulnerable, can we design techniques targeting those vulnerable
features? Considering temperature is a key factor, can we control the temperature to mitigate SDCs? Considering
bitlips have location preference, can we design better coding techniques? Section 8 explores some of these ideas.

Observation 16. Due to the ineicient diagnosis and handling strategies, CPU SDCs introduce signiicant
human costs and the risk of irreparable failures.

Like the samples mentioned in Section 2.2, some production services have set some strategies for data integrity
veriication, which enables systems to detect some CPU SDCs before being exposed to the user. In these samples,
however, CPU SDCs still trouble services. This motivates us to investigate challenges on SDC diagnosis and
handling.

Due to the silent nature, intermittent occurrence and insuicient knowledge when facing SDCs, it is challenging
to debug a SDC problem. Alibaba Cloud spent weeks of engineering time for diagnosing a single SDC issue, and so
did other cloud service vendors like Meta [23]. Even with a comprehensive understanding about the inluence of
SDCs on speciic applications after encountering repeated instances of similar SDC issues, the debugging process
continues to rely on manual identiication skills of experienced engineers. To save engineering costs, there is still
a demand for automated SDC diagnosis techniques and SDC-related information reporting techniques.

Additionally, existing systems also need to improve the SDC handling process. Given that the root cause of a
SDC issue is not pinpointed immediately, the faulty processor will continuously generate SDCs and afect the
system within a time interval. Consequently, at the beginning of the troubleshooting and recovery, systems
will encounter multiple SDCs. These SDCs, with spatial and temporal locality, have the potential to exceed the
protection ability of fault tolerance strategies, and thus have a widespread impact. In order to shorten the time
interval of SDC inluence, eicient troubleshooting strategies, especially responsive to repeat ofenders (i.e.,
components that frequently correlate with errors), are imperative.

7 Implications

CPU SDCs have become a non-negligible challenge for systems. This section discusses their impacts on fault
models, optimizations of strategies against CPU SDCs, and future research ields to better address SDC-related
problems.

7.1 Optimizations of Fault Models

Fault models are widely used to analyze potential consequences, design related strategies, and build fault
injectors for simulation experiments. When assessing the occurrence of SDCs in processors, existing fault models
predominantly focus on the SDCs caused by exogenous factors (e.g., irradiation), but fail to consider CPU SDCs,
which are caused by endogenous factors (i.e., hardware faults of processors) [46, 50, 51, 54]. Due to the signiicant
diference between SDCs caused by exogenous factors and CPU SDCs, these fault models fail to accurately
describe the errors, and their shortcomings result in the lack of eicient strategies. Following this, we investigate
challenges on existing fault models through our observations, and explore opportunities for constructing an
advanced model.
CPU SDC is not just a łBlack Swanž event. Plenty of CPU SDC cases occur in the production environment,

encompassing various testing timings, various micro-architectures and the whole lifetime of the processor
(Observation 2, 3 and 5), with a non-negligible failure rate and occurrence frequency (Observation 1 and 12).
However, in existing fault models, SDC that impacts the processor computing is an extremely unlikely event,
with the MTTF (mean time to failure) as 1000 years [50]. As a result, CPU SDC is no longer limited to particular
scenarios, such as space applications and critical applications, but becomes a general problem, especially in the
scenarios of addressing scalability challenges.
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Patterns in corrupted data. It is often assumed in SDCs caused by exogenous factors that each bit position has
an equal probability of lipping [25], i.e., the distribution of SDCs caused by exogenous factors follow a uniform
distribution. However, bitlips of CPU SDCs can be governed by other types of distribution besides the uniform
one and can be position-correlated (Observation 9 and 10). This further has signiicant implications for systems,
including the value of corrupted data and the efectiveness of fault tolerance techniques (Observation 11 and 15).
As a result, an advanced fault model of CPU SDCs should consider various types of bitlip distributions and SDCs
with the same bitlip position(s).

Signiicant occurrence variance. The occurrence of CPU SDCs is intermittent, but not transient or permanent
like assumptions in existing fault models [40]. However, due to the signiicant variance among diferent settings
(Observation 12), CPU SDCs face challenges of both transient errors and permanent errors: Less reproducible
SDCs act like transient errors, where the poor reproducibility makes identifying the root cause a challenge.
Highly reproducible SDCs act like permanent errors, where systems must handle these SDCs before restarting,
even when systems can tolerate multiple such errors. As a result, an advanced fault model should consider the
full scope of reproducibility in CPU SDCs. For example, a fault injector for CPU SDCs should ofer a wide range
for the coniguration of the occurrence frequency.

7.2 Optimizations of Strategies against CPU SDCs

In Section 6, we investigate the inadequacies of existing strategies against CPU SDCs. In this section, we further
present some optimization directions based on our observations.

Operation-speciic fault tolerance. The susceptibility to CPU SDCs varies across diferent operations. Operations
that extensively use vulnerable features and produce signiicant heat are more susceptible than those rarely use
such features (Observation 6 and 13). To enhance eiciency of fault tolerance techniques, it is practical to employ
diferent strategies to diferent operations according to their susceptibility. For example, employing redundancy
strategies for highly vulnerable operations and employing testing strategies for the rest can reduce the overall
overhead of system protection. Additionally, considering that compared with SDCs caused by exogenous factors,
only speciic operations are susceptible to CPU SDCs (Observation 6), the need for universal strategies diminishes.
Consequently, it is appropriate to design ad-hoc strategies to these susceptible operations, particularly those that
are frequently utilized in systems.

Utilizing unafected cores in faulty processors. Defects of a faulty processor can manifest in a subset of processor
cores (Observation 4). Large companies decommission the whole faulty processor or isolate the whole machine
no matter which of its cores is identiied as faulty [22, 32]. This practice is reasonable given the relatively low
failure rate in the current cluster maintenance. However, this practice also leads to the waste of unafected cores
in faulty processors. With the increasing maintenance diiculty of a cluster, such as underwater datacenters
and zero-maintenance storage systems, it is worthwhile to investigate the feasibility of continuing to utilize
the unafected cores within a faulty processor [44]. Furthermore, utilizing part of the processors can lead to
heterogeneous servers, and thus scheduling strategies are imperative to achieve load balance.

Highlighting the abnormal behaviors in the systems. We observe that some phenomena occur alongside CPU
SDCs, potentially serving as łside channelsž for detecting CPU SDCs. For example, some CPU SDCs are co-
occurred with crashes or have the same bitlip positions (Observation 7 and 10). A practical approach to leverage
these side channels is to analyze system logs: If a processor in the system frequently associates with crashes,
it could also produce SDCs. Similarly, if multiple errors in the systems have the same bitlip positions, it may
indicate a faulty processor with the potential to produce SDCs.

7.3 Future Research Fields

Beyond the scope of our investigation in this paper, several research areas worth future eforts. We highlight the
necessity of these ields in light of our observations.
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SDC in processing units. Many hardware devices, such as graphics processing unit (GPU), tensor processing
unit (TPU), and data processing unit (DPU), have similar manufacturing processes and logic designs to the CPU.
Consequently, they share reliability challenges with the CPU. In other words, SDCs can also occur in them and
SDCs in diferent processing units can have similar patterns. Compared with CPU, these processing units have
more instances of the vulnerable features and vulnerable datatypes. For example, one GPU can have thousands
of cores for loating-point calculations, and loating-point numbers are the most vulnerable one of datatypes.
DPU is designed for data-centric operations such as encryption, which is proven to be susceptible to CPU SDCs.
These processing units have been extensively engaged in clusters, and tend to scale up in response to popular
applications like machine learning. Additionally, they are also becoming more complex. The scale-up situation
and increasing complexity highlight the necessity of research for their SDC issues. For example, testing toolchains
are essential for these processing units.
Evaluating the vulnerability of features. Vulnerable features identiied in our study are limited to the micro-

architectures used in Alibaba Cloud and testing ability of the toolchain. As the technology advances, more
processor features will emerge in the future. As a result, methodologies to evaluate the feature vulnerability
are imperative. Such methodologies aid in the construction of efective testcases and design of eicient testing
toolchains. Our study can be used to verify evaluation methodologies, since we have pointed out some vulnerable
features and non-vulnerable features. We also assume that some factors, such as the complexity of hardware
components (Observation 6), should be considered.

Inluence in speciic scenarios. There still lack detailed studies for the inluence of CPU SDCs in speciic scenarios,
such as machine learning and high-performance computing (HPC). It is possible that CPU SDCs have minor
inluence in such scenarios. For example, since loating-point number calculation tends to incur less accuracy
losses, quantization technology [63] used in machine learning applications can efectively tolerate many of these
minor precision losses. Besides, some algorithms used in HPC, such as Jacobi method, can tolerate these minor
precision losses through several computation iterations [25]. This indicates that although loating-point numbers
are most vulnerable to SDCs, the actual impacts may not be large. However, it is also possible that CPU SDCs can
still lead to catastrophes in these scenarios. Firstly, faulty processors repeatedly manifest SDCs, which pollute the
whole data stream rather than certain stored data. Secondly, SDCs occur at speciic processes can lead to critical
errors (i.e., errors that make models give wrong answers) [55]. In the further, it is beneicial to study the accurate
inluence of CPU SDCs in speciic scenarios.

8 Improving SDC Mitigation Strategies with Our Observations

To illustrate how our observations assist in SDC mitigation, we propose a concrete strategy called Farron by
improving Alibaba Cloud strategies based on observations aforementioned. Farron is able to protect applications
from CPU SDCs with low overhead and high testing eiciency.

Baseline. Existing strategies used by Alibaba Cloud mitigate SDC impacts by conducting proactive SDC testing,
which helps prevent impacts of CPU SDCs by identifying and removing faulty processors before they generate
SDCs. In summary, SDC tests are conducted both in pre-production and every three months during production,
and in every round of tests, all testcases are executed sequentially and allocated with equal testing resources. As
for one processor whose core(s) are detected as defective, Alibaba Cloud deprecates the entire processor.

8.1 Design

Due to the limitation of SDC testing, Farron uses temperature controls as a complement to SDC testing, based
on our insight from Observation 13. To determine when to activate temperature controls and when to apply
SDC testing, Farron establishes a temperature boundary, which is adaptive to actual run-time conditions of the
application. Farron further performs eiciency-focused SDC tests, especially in regular SDC tests. Moreover,
Farron employs the ine-grained processor decommission and maintains a reliable resource pool to manage
unafected cores [44].
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Figure 13 illustrates the Farron worklow, which operates in three states: pre-production, online, and suspected.
SDC tests with adequate resources will be performed during the pre-production state. During the online state,
user application is executed on cores that have been proven reliable through SDC testing and operates under the
triggering condition controlled by Farron. Regular SDC tests are conducted in this state for long-term protection.

Pre-production Online

Suspected

Adequate Test
Reliable Resource Pool

Triggering Condition Controller

Application

Targeted Test

Regular Test

Health AnalysisTestcase Pool

Fig. 13. Workflow of Farron.

In the event that SDC tests fail, Farron performs in-depth SDC
tests targeted at the suspected processor, and adjusts the reliable
resources based on the analysis of test results.

Adaptive temperature boundary. As mentioned in Observa-
tion 13, diferent SDCs can be divided by a temperature boundary,
which decides when to perform triggering condition controls and
how long SDC testing needs to execute. The primary challenge
Farron faces is how to determine the boundary. If the boundary
is set too high, long testing duration is required to guarantee
reliability under high temperature. Conversely, if the boundary is
set too low, some triggering condition controls will be frequently

activated, leading to impacts on application performance.
Farron assigns the highest priority to application performance, therebyminimizing the frequent use of workload

backof. To accomplish this, Farron diferentiates the temperature boundary for cooling device operation and
workload backof, and makes the boundary for workload backof adaptive. As illustrated in Algorithm 1, Farron
employs a window to track recent temperaturemonitoring records, raising the temperature boundary for workload
backof if more than a half of temperature records within the window exceed current boundary, indicating that the
temperature is within normal working range for the application in the given situation. By iteratively increasing
the temperature threshold, Farron learns the standard working temperature, thereby preventing the excessive use
of workload backof. when the temperature records exceed current boundary, workload backof will be triggered
to protect the application.
Farron further adjusts regular test duration based on this adaptive temperature boundary, adhering to the

patterns outlined in Observation 13 (i.e. lower temperature boundary condition will be allocated less test duration).

Algorithm 1: Adaptively adjust temperature boundary

1 ������ [] ← � ���_���ℎ_����������� (����_�����������,������_��� − 1) // Initialize record window
2 �������� ← ����_����������� // Initialize safe temperature
3 while �������� ������� ����� ������� do

4 ������ [] .������� (���_����������� ())

5 if ������.����� (> ��������) ≥ ������_���
2 then

6 �������� ← ������.� ����� (> ��������).���() // Update safe temperature
7 if ������.���� () > �������� then

8 �����_��������_����� � � () // Trigger workload backof
9 while ���_����������� () > �������� do

10 ����� (����� � � _��������)
11 ����_��������_����� � � ()
12 ����� (������_��������)
13 ������.������� () // Ready for next temperature record
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Fig. 14. Regular testing coverage for faulty proces-
sors.

Overhead:
Farron Baseline

Test Control Total Test
MIX1 0.051% 0.049% 0.100%

0.488%

SIMD1 0.115% 0.031% 0.145%
FPU1 0.017% 0 0.017%
FPU2 0.017% 0 0.017%
CNST1 0.033% 0.013% 0.046%
CNST2 0.027% 0 0.027%

Table 4. Farron overhead for diferent faulty proces-
sors.

Eiciency-focused SDC testing. Due to the constraints of online test resources, regular tests are conducted with
an emphasis on testing eiciency. However, given the limited guidance available for SDC tests, achieving eiciency
in existing testing procedures proves challenging. Farron seeks to enhance SDC testing eiciency by drawing on
insights related to testcase prioritization, targeted features and testing environments (Observation 6, 13 and 14).
We designate targeted features and priorities for testcases, establishing three distinct priority levels: basic,

active, suspected. The łbasicž priority is assigned to testcases that, despite being designed for a particular feature,
fail to detect faults in our large-scale tests. The łactivež priority is designated for testcases with proven track
records of successfully identifying defective features. Lastly, the łsuspectedž priority is only assigned to testcases
that have detected errors on the core(s) of the current processor.
Farron mainly allocates testing resources to testcases whose targeted feature is utilized by the protected

application, focusing on those marked as łsuspectedž (if any) and łactivež. Remaining testcases are tested in a
best-efort mode, ensuring a comprehensive but eicient testing approach.
Additionally, we place a strong emphasis on the testing environment. Farron initiates the testing by running

burn-in workloads and tests every core in a processor simultaneously to increase core temperature while testing.
We believe this testing method can cover the application execution temperature, since testcases in the toolchain
are stressful and efectively generate heat (Observation 13).
Fine-grained processor decommission. Identifying all defective cores in a faulty processor can prove diicult,

as some defects may be challenging to detect (Observation 4). Initially, Farron accumulates testcases with the
łsuspectedž priority by performing adequate testing on the cores identiied with defects. By conducting adequate
SDC tests targeted on these łsuspectedž testcases, Farron can eiciently validate the function of the remaining
cores. If more than two cores within a processor are found defective, Farron deprecates the entire processor in
line with the pattern presented in Observation 4. Conversely, Farron masks that particular defective core and
continues utilizing the other cores as normal.

8.2 Evaluation

We implement and evaluate Farron on our faulty processors, and measure Farron’s eiciency and overhead.
Figure 14 shows the coverage of SDCs in one round of tests, which is deined as the ratio of detected errors to

the total known errors in the faulty processor. As shown in the igure, the coverage of Farron is higher than the
baseline. In terms of overhead, the average one-round regular test duration of Farron is 1.02 hours, whereas in
baseline, it is 10.55 hours. Both improvements stem from the prioritization strategy, which gives more resources
to more efective testcases.
Note that in some processors, there exist cases that are diicult to cover in one round of tests, since these

errors need both high temperature and long-term testing. Farron mitigates them with temperature controls. We
simulate workloads afected by these errors using our toolchain for hours. We ind Farron can efectively control
the run-time temperature of workloads below the boundary and these workloads do not trigger SDCs with the
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protection of Farron. For example, in MIX1, temperature of the server can be controlled below 60°C with diverse
workloads, while we observe some SDCs on this processor needs more than 70°C to trigger. During the procedure,
Farron’s workload backof was triggered 0.864 seconds per hour on average, keeping the temperature under 59℃.
Owing to the adaptive temperature boundary, the workload backof strategy is triggered infrequently, resulting
in minimal performance impact.

Table 4 presents the overhead of Farron and the baseline on diferent faulty processors. For Farron, the overhead
includes the testing overhead and the temperature control overhead. The testing overhead is equal to the duration
of one round of test over three months since regular tests are performed every three months. The temperature
control overhead is equal to the backof duration over the total duration of the simulation. The baseline only
includes testing overhead. Note that for Farron, the testing overhead can vary across CPUs due to its adaptive
choice of tesetcases to run and adaptive balance of testing duration and temperature control threshold.

9 Conclusion

In this paper, we undertake a comprehensive investigation of CPU SDC phenomena with measurement and anal-
ysis in a large production environment. Our research involves multiple perspectives, including leet maintenance,
software symptoms, occurrence patterns and current practices on SDCs. We present 16 observations, and further
elucidate their implications on fault models, strategy optimizations, and future research ields. Subsequently, we
propose a concrete mitigation approach named Farron, which illustrates how to leverage our study to improve
SDC mitigation strategies.
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