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Abstract

In public clouds, users must manually select a datacen-
ter region to upload their ML training data and launch ML
training workloads in the same region to ensure data and
computation colocation. Unfortunately, isolated decisions by
individual users can lead to a mismatch between workload de-
mand and hardware supply across regions, hurting the cloud
provider’s hardware utilization and profitability. To address
this problem in Meta’s hyperscale private cloud, we provide
a global-scheduling abstraction to all ML training workloads.
Users simply submit their training workloads to MAST, our
global scheduler, and rely on it to intelligently place both data
and training workloads to different regions. We describe three
design principles that enable MAST to schedule complex ML
training workloads at a global scale: temporal decoupling,
scope decoupling, and exhaustive search. MAST successfully
balances the load across global regions. Before MAST, the
most overloaded region had a GPU demand-to-supply ratio of
2.63 for high-priority workloads. With MAST, this ratio has
been reduced to 0.98, effectively eliminating the overload.

1 Introduction

The success of ML applications [8,46] has resulted in ML
training becoming the fastest-growing datacenter workload.
Public cloud providers run ML training workloads in multiple
geo-distributed datacenter regions [3,4,15] to ensure sufficient
capacity. Accordingly, users need to manually select a region
to upload their ML training data and then launch training
workloads in the same region to ensure colocation of data
and computation. Unfortunately, such manual selection can
lead to a regional mismatch between workload demand and
hardware supply. For instance, one region may exhaust its
capacity, accumulating a long queue of pending jobs, while
another region has surplus capacity remaining idle.

Contributions: Chunqiang, Kutta, and Tuomas initiated the MAST project
in 2020. In terms of paper writing, Yang wrote the majority of the paper,
followed by Chunqgiang. In terms of coding, Arnab, Kutta, and Tuomas led
the project’s development at different times. All other authors also made
major contributions to the project’s development.

Meta’s private cloud used to experience this load imbalance.
It comprised tens of datacenter regions, millions of machines,
and tens of thousands of GPUs. Similar to public clouds,
users initially had to manually select regions to store train-
ing data and launch workloads. Users’ suboptimal decisions
previously led to an imbalance in the GPU demand-to-supply
ratio, reaching as high as 2.63 in certain regions for high-
priority workloads, which was later reduced to 0.98 through
optimizations described in this paper.

While much research has been conducted on scheduling
ML workloads in a single cluster [1,2,5-7,9,13,17,21,23—
25,30,31,33-35,39,40,45,49,51-54,57,59], there has been
little effort to address the issue of regional mismatch between
workload demand and hardware supply. To address this chal-
lenge, our private cloud has introduced the global-scheduling
abstraction that shields users from the complexity of regions.
With the global-scheduling abstraction, users simply submit
their ML training workloads to our global scheduler called
MAST (short for ML Application Scheduler on Twine [44])
and rely on it to intelligently place both training data and
workloads into different regions.

To provide the global-scheduling abstraction, MAST faces
two major challenges:

¢ Data-GPU colocation: Without careful coordination, there
is a risk of location mismatch between GPUs and data. For
instance, one region may have the necessary training data
but run out of available GPUs, while another region may
have available GPUs but lack the required training data.
Due to the massive volume of training data and the limited
cross-region network bandwidth, on-demand cross-region
data migration can be both costly and time-consuming.

* Scalability: MAST allocates not only GPU machines
for training but also CPU machines for data preprocess-
ing [58]. As CPU machines may be dynamically reas-
signed across ML and non-ML workloads based on de-
mand, conceptually, MAST needs to find machines to run
ML workloads out of millions of machines spread across
tens of regions. Global resource allocation at this scale
has not been studied before.
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We leverage three principles to address these challenges: fem-
poral decoupling, scope decoupling, and exhaustive search.
We elaborate on these principles below.

Temporal decoupling. We divide the scheduling responsibili-
ties into two paths: a fast path for real-time job scheduling and
a slow path that continually optimizes data and machine as-
signment in the background. The slow path intelligently repli-
cates ML training data across regions, enabling the fast path
to more easily colocate computation with data. Despite the
relaxed timing, cross-region data placement remains very chal-
lenging. It requires continuous optimization of the placement
of billions of data partitions across tens of geo-distributed
regions, considering per-region capacity constraints and the
data access pattern of millions of daily ML training jobs and
analytics jobs from Spark [55] and Presto [42].

We model data placement as a mixed integer programming
(MIP) problem, and the scarcity of GPUs drives novel de-
cisions in our solution. Due to the high cost and demand
of GPUs, we target maximizing GPU utilization. Imposing a
hard constraint in the MIP problem that GPU demand must be
lower than GPU supply in every region, as in prior work [20]
for CPU and storage, often renders the problem unsolvable. In-
stead, MAST allows GPU oversubscription and preempts low-
priority jobs as needed. This approach mandates a reassess-
ment of the objective function and constraints in the MIP
problem, not only for GPU-related terms but also for other
resources that GPUs depend on. We share insights gained
from multiple iterations refining the MIP problem through
production experience (§3).

To tackle the scalability challenge, as illustrated in Figure 1,
MAST adopts a three-level scheduling hierarchy: Global ML
Scheduler (GMS)—Regional ML Scheduler (RMS)—Cluster
Manager (CM). In addition to managing data placement, the
slow path also helps scale RMS by constraining its search
for available machines. It dynamically pre-assigns machines
to dynamic clusters, allowing RMS to only search through
machines within the ML dynamic clusters and disregard non-
ML dynamic clusters.

Scope decoupling. A job scheduling system has three main
responsibilities. First, it manages the job queue, which entails
queuing and prioritizing jobs when there are insufficient re-
sources to run all jobs. Second, it handles resource allocation,
which involves computing bin-packing-like solutions by mod-
eling machines as bins and tasks as objects. Third, it manages
container orchestration, which executes the bin-packing plan,
runs containers, and monitors their health. Traditional sys-
tems [19,47,48,56] handle all these responsibilities within
the same scope, i.e., within a cluster.

Our key insight is that sharing the same scope for all three
responsibilities unnecessarily limits scalability, reducing the
potentially larger scopes of job queue management and re-
source allocation to the minimal scope of container orches-
tration. Note that container orchestration is the least scalable

due to its heavy duties and, consequently, has the smallest
scope.

In contrast, as shown in Figure 1, our scope-decoupling
principle allows the three responsibilities to operate at differ-
ent scopes: (1) the job queue is managed by GMS at the global
scope, covering all pending jobs for all regions; (2) resource
allocation is managed by RMS at the regional scope, taking
into account all machines in a region’s ML dynamic clus-
ters; and (3) container orchestration is managed by the CM
at the smallest dynamic-cluster scope. This approach allows
job queue management and resource allocation to operate at
bigger scopes to minimize stranded resources and optimize
job placement. A key challenge is to make GMS and RMS
sufficiently scalable to operate at their bigger scopes, which
is further discussed in §4.2.1 and §4.3.1.

Exhaustive search. Existing systems [10, 20, 28] often adopt
the federation approach to scale out. When a new job arrives,
the Federation Manager employs simple heuristics to assign
the job to the least loaded cluster, and then its cluster manager
manages all subsequent operations, including job queuing,
resource allocation, and container orchestration. However, as
ML training clusters are almost always fully utilized, schedul-
ing a new job often requires a complex decision to preempting
existing lower-priority jobs. This complexity makes the sim-
plistic federation approach less effective.

Our key insight is that, unlike short-lived analytics jobs [10,
38,41,50], ML training jobs often run for extended periods
on expensive GPUs. Therefore, instead of searching just one
cluster to allocate resources hastily, it is beneficial to conduct
an exhaustive search across all relevant clusters for higher
quality placement. As depicted in Figure 1, MAST’s multiple
RMSs can concurrently compute resource allocation plans for
one job in different regions, with the optimal plan determined
through a final auction process. A key hurdle is ensuring the
scalability of RMS, which is discussed in §4.3.1.

Contributions. We make the following contributions.

* We propose the global-scheduling abstraction to shield
users from the complexity of geo-distributed datacenters
and improve hardware utilization through joint placement
of data and training workloads across regions.

* We propose three principles—temporal decoupling, scope
decoupling, and exhaustive search—to achieve high-quality
data and computation placement in a scalable manner.

* We demonstrate the effectiveness of global ML scheduling
through our hyperscale deployment of MAST and validate
its design using production data.

2 Background of ML Training at Meta

In this section, we provide the necessary background to set
the stage for future discussions.

Datacenter and hardware. Our private cloud comprises
tens of regions and millions of machines. A region comprises
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Figure 1: Conceptual architecture of MAST. Global ML Scheduler (GMS), Regional ML Schedule (RMS), and Cluster Manager
(CM) handle different scheduling responsibilities at different scopes: global, regional, and cluster, respectively.

multiple datacenters that are close to one aother. The cross-
region network bandwidth is about 10 times lower than the bi-
section bandwidth between datacenters within a region. Parts
of a datacenter are occupied by ML training clusters, with
machines equipped with multiple GPUs and connected by
both 8x200Gbps RoCE network and 4x100Gbps Ethernet.
ML training is data intensive and prefers colocating the
compute and data of a training workload. For tasks that belong
to an ML training workload, we prefer to place them in the
same rack, cluster, datacenter, and region, in that order. Sepa-
rating the compute and data across regions or placing tasks in
different regions would result in unacceptable performance.
Historically, datacenter hardware has been procured incre-
mentally depending on the specific needs at different times,
resulting in uneven distribution of hardware types across re-
gions. This is discussed in Flux [11] and also shown in Fig-
ure 2. This disparity makes colocation of data and compute
difficult, requiring global optimization. For example, since
Region6 is short of GPUs, it is better to place data used by
CPU-based analytics jobs in Region6. If a few GPU-based
ML training workloads share the same data as those analytics
jobs, we should schedule them in Region6 as well. However,
if there are too many such ML workloads, we will have to
replicate their data to other regions and execute them there.

Dynamic clusters. As shown in Figure 1, a slow-path com-
ponent called RAS pre-assigns machines to dynamic clusters,
which are known as “reservations” in the RAS paper [36].
This enables the Regional ML Scheduler (RMS) to scale by
searching only through machines that are within the ML dy-
namic clusters. Typically, an ML dynamic cluster comprises
both GPU and CPU machines. To update dynamic clusters,
RAS takes as inputs all machines in a region and the new
or updated specification for each dynamic cluster’s intended
size and preference for certain hardware types. RAS formu-

lates a MIP problem to allocate machines to dynamic clusters.
MAST consumes the outputs of RAS (i.e., the dynamic clus-
ters created by RAS), and MAST’s scheduling decisions do
not influence or feed back into RAS.

We provide a brief summary of RAS and refer readers to
the RAS paper [36] for details. RAS ensures that the total
machine capacity allocated to a dynamic cluster meets the
requirements specified by administrators and includes suffi-
cient buffers to handle both random and correlated machine
failures. Correlated failures, such as power outages in large
fault domains within a datacenter, can render tens of thou-
sands of machines unavailable. RAS distributes a dynamic
cluster’s machines across different fault domains to ensure
that sufficient healthy machines remain available when a large
fault domain fails. Additionally, RAS reduces unnecessary
cross-datacenter communication by ensuring a proper ratio
of compute machines to storage machines in each datacenter.
Finally, RAS reruns its optimization periodically (e.g., every
30 minutes) to adapt to changes. For example, when new dat-
acenters are brought online, RAS can reduce the buffer size
needed for handling correlated failures by further spreading
out a dynamic cluster’s machines into these new datacenters.

ML training workload. A training workload comprises
multiple heterogeneous jobs, each job comprises multiple
homogeneous tasks, and a task is mapped to a Linux container.
Therefore, the hierarchy is workload—job—task. For example,
a training workload may comprise (1) a training job that
executes back-propagation training; (2) a data-preprocessing
job [58]; (3) a parameter-server job; and (4) an evaluator job
that evaluates the generated model. A workload’s all tasks
need gang scheduling, i.e., they must be allocated together.
If a training job uses less than a full GPU, in theory, the
GPU can be shared by multiple jobs using Multi-Instance
GPU (MIG) [37] or other software approaches. In practice,

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation

565



-
T

o
©
T

Normalized Resource
o o
£ [}
.

o
N
T

o

Figure 2: Uneven distribution of hardware across regions.
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of distinct ML workloads accessing each partition.

however, all our training jobs use at least one full GPU due to
the large amount of training data.

Data warehouse. Our data warehouse stores exabytes of data
in a three-level hierarchy: hundreds of namespaces—millions
of tables— billions of data partitions. A partition is immutable
once created, but new partitions can be added to an existing
table. For example, every day, the “user_activity” table can
add a new partition to record user activities in the past 24
hours. Some data partitions are simultaneously used by ML
training and data analytics, such as Spark [55] and Presto [42].
We have developed a system called Tetris, which optimizes
data placement across regions, taking into account the data-
access patterns of Spark, Presto, and ML training jobs.

Sharing of data partitions by workloads. Figure 3 shows
that data partitions are often shared by multiple ML work-
loads. At the P50, P90, and P99 percentiles, a data partition
is shared by 3, 17, and 45 distinct workloads, respectively.
Data sharing complicates the problem of data placement, as
migrating one data partition across regions may require the
migration of multiple workloads dependent on the partition.
Furthermore, it is necessary to replicate the hottest partitions
across multiple regions to prevent load imbalance, as a large
number of workloads dependent on those partitions will oth-
erwise be forced to run in a small number of regions.

Long execution time of ML training jobs. ML training
is resource intensive and can take a long time to finish. At
Meta, ML training workloads often take 10 times longer to

finish than Spark [55] analytics jobs. Therefore, a subopti-
mal placement decision has a bigger negative impact on ML
training. This motivates the exhaustive search principle de-
scribed in §1. Moreover, when workloads run longer on a
larger number of machines, the workload scheduling through-
put decreases. Therefore, as shown in Figure 1, it is feasible
to manage the job queue and resource allocation at the global
and regional scope, respectively, rather than at the smaller
cluster scope that leads to more fragmentation.

Quota and job preemption. Training workloads with differ-
ent priorities are assigned capacity quotas per priority level.
If a team’s capacity usage is within their quota, MAST guaran-
tees starting their training workloads within a certain latency.
Once a team exceeds their quota, they can still submit work-
loads to run opportunistically at the lowest priority, subject
to preemption when a higher-priority workload arrives. Con-
sequently, training clusters are always fully utilized due to
low-priority workloads for experimental purposes. Schedul-
ing a new workload often involves a complex decision to
preempt lower-priority jobs. This complexity renders a sim-
ple Federation Manager less effective.

Checkpoint for recovery. A training workload periodically
checkpoints its state. When a machine fails, the cluster man-
ager restarts its workload on a replacement machine, allowing
it to recover its state from the checkpoint and resume execu-
tion. Before preempting a low-priority workload for a high-
priority one, it also saves a checkpoint for later restoration. As
we continuously reduce the time needed to save a checkpoint,
we are moving towards more frequent checkpoints to mini-
mize the amount of lost work between two checkpoints during
recovery. This has become increasingly important as the size
of training workloads for large-language models keeps grow-
ing, and recovery becomes more costly.

Separate application-level schedulers for ML and non-ML
workloads. As depicted in Figure 1, ML and non-ML work-
loads are managed by distinct schedulers. The extensible
architecture of Twine [44] allows all workloads to share a
common cluster manager for machine and container manage-
ment, while employing different application-level schedulers
for specific workloads. For instance, MAST is used for ML
training workloads, Shard Manager [29] for stateful databases,
Turbine [32] for stream processing, and Chronos for analytics
jobs. Each of these application-level schedulers is optimized
for a specific purpose. Shard Manager, for example, is opti-
mized for high database availability, Chronos for high schedul-
ing throughput of short-lived analytics jobs, and MAST for
high-quality decisions and data-GPU colocation.

3 Slow-path Data Placement

To enable global ML scheduling, it is crucial to have both the
necessary hardware and training data for an ML workload
available in certain datacenter regions simultaneously. Fol-
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lowing the temporal-decoupling principle, MAST optimizes
cross-region data placement on a daily basis using a slow-
path component called Tetris, which determines data place-
ment and replication for the underlying storage system. Given
that data analytics (e.g., Spark [55] and Presto [42]) and ML
training can concurrently access the same data, Tetris jointly
optimizes data placement for them. The entities accessing the
data, such as Presto queries, Spark jobs, and ML workloads,
are collectively referred to as “jobs” for simplicity.

3.1 Context of Data Placement

Recall that our data warehouse uses a three-level hierarchy:
hundreds of namespaces—millions of tables—billions of data
partitions. The large number of data partitions presents a sig-
nificant scalability challenge for data placement. To improve
scalability, Tetris determines data placement in two steps: first
by placing tables to regions, which means that all partitions
of a table must reside in the same region; and then by plac-
ing partitions to data centers within each region. Since the
algorithms for both steps are similar, we mainly present the
table-to-region placement algorithm.

Each table has a home datacenter region, which is where
its new data is generated. Subsequently, the table may be
replicated to other regions for various purposes. If an ML
job takes a table as input, then at least one of the table’s
regions should have the types of GPUs required by the job.
We refer to this property as “data-GPU collocation.” Due to
the large size of our data warehouse (exabytes) and limited
cross-region network bandwidth, replicating data takes time.
Consequently, a table’s replicas in other regions are more
stale compared to those in the home region. Therefore, high-
priority jobs requiring fresh data must run in the home regions
of their input tables, and these home regions must have the
types of GPUs required by those jobs. We call this property
“training-at-home-region.” For low-priority jobs, training-at-
home-region is preferred but not required.

Tetris first determines the home region of each table and
then determines replica regions. We are still evaluating the
feasibility of determining both simultaneously. While it may
result in improved placement, currently we find its computa-
tional cost to be too high.

To plan data placement, Tetris requires the usage informa-
tion of each job’s input tables, hardware needs, and estimated
runtime. High-priority training jobs, with trained models de-
ployed for immediate production use, are typically retrained
daily or more frequently with updated data. The usage infor-
mation of such recurring jobs rarely changes, so Tetris can
derive this information from their historical data. Tetris does
not predict usage information for new training jobs that show
up for the first time. Instead, MAST’s fast-path online schedul-
ing manages first-time jobs upon submission. If no region has
both the necessary data and hardware to run a first-time job,
MAST will initiate data movement and wait for its comple-
tion before scheduling the job. However, many first-time jobs

benefit directly from data placement plans for recurring jobs
and will not be blocked on data replication, as jobs from the
same team frequently share input tables and require the same
types of hardware. For instance, multiple one-time experi-
mental jobs are often submitted to fine-tune a parameter of
a production recurring job. Our production data in §5 shows
that although about 70% of the jobs are first-time jobs, only
a small fraction of them trigger on-demand data movement.
Note that on-demand data movement may also be triggered
due to failures or in rare cases where a recurring job changes
its input tables or hardware needs.

3.2 Problem Formulation Overview

We formulate home-region placement as the mixed-integer
programming (MIP) problem shown in Figure 4. While MIP
has been applied in resource allocation [11,20], the key in-
sights often lie in the details of a specific problem formulation.
In Tetris, we need to carefully evaluate various approaches for
resource allocations:

 The hard-quota approach mandates that resource demand
must stay below supply in every region.

* The hard-balance approach does not enforce hard-quota
but mandates that the overload situation (i.e., demand
above supply) must not deteriorate for any region due
to a new placement.

* The soft-balance approach does not enforce hard-quota
or hard-balance but instead aims to balance the demand-
to-supply ratio across all regions as much as possible.

After iteratively improving Tetris based on production experi-
ences, we have learned that different resource types require
different approaches. For GPUs, imposing hard constraints
in the MIP problem, as in previous work for CPU and stor-
age [20], often renders the problem unsolvable due to the
scarcity of GPUs. Hence, we adopt the soft-balance approach
and preempt low-priority jobs to accommodate high-priority
jobs as needed. Specifically, we introduce a penalty if a re-
gion’s GPU demand deviates from the ideal case where all
regions’ GPU demand-to-supply ratios are the same. In our
initial implementation, the situations of overload and under-
load were penalized equally. However, in practice, overload
is more problematic as it causes longer wait times for the
impacted jobs. Therefore, our current implementation more
severely penalizes overload.

For storage space, the hard-quota approach is necessary
because we cannot delete data when demand exceeds supply.
However, hard-quota alone is insufficient, as an imbalanced
data distribution across regions may occur, leading to GPUs in
some regions being bottlenecked on I/O bandwidth to access
the data. Therefore, we also apply soft-balance to storage. In
the past, we also experimented with using hard-balance, but it
proved ineffective as it completely prevents moving data from
a region to another region with a higher demand-to-supply
rate, which is sometimes necessary for other goals.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 567



Concretely, our MIP problem formulation aims to achieve

the following soft goals:

1. Minimize cross-region traffic for reading data during train-
ing (Expression 1).

2. Balances the demand and supply of GPUs across regions
(Expression 2).

3. Balances the demand and supply of storage space across
regions (Expression 3).

In addition, it aims to meet the following hard constraints:

4. Each region has sufficient storage space for the tables it
stores (Expression 4).

5. Each application’s CPU usage does not exceed its quota
(Expression 5). Here, applications refer to those generating
data for or sharing data with ML training, such as analytics
jobs. An application may comprise multiple jobs.

6. The demand of jobs satisfying the training-at-home-region
property remains above a certain threshold (Expression 6).
3.3 Problem Formulation Details

This section can be safely skipped during the initial reading,
as it mainly details the problem formulation.

Minimize:
wi Z Z size(table;) [1—1(R(job;),R(table;))] (1)
job; table;€job;
+wy Z Z ZkaGI (Demandgl%ig?fpk,Supplychlg,E’;’) 2)
region; GPU;; Py '
fy Y oaDemandESt SupphSESE) ®
region;
Subject to:
Vregion r
Z size(table;) I(R(table;),region,) < storage_capacity(r) “)

table;

Vapp Z CPU(job;) I(R(job;),region,) < CPU_capacity(app,r) (5)
job jEapp

)y GPU(job,)I(GPU-Type;,, ,R(job;)) > threshold  (6)
high-priority job; -

Where:

region; region;
] (DemandGPUj:Pk , SUPPIYGPU/') =

Demanda%'[?:f P Supplyr(]egll});" @
L Supplygpy,

region;

region;
): DemandGPUjAPk
region;
. . region; region;
X 51gm01d(max(0,DemandGPUI_’ — SupplyGPUj') 3)

region; region;\
(o)) (Demandsmmgé7 Supplyanagé) =
2
region; region;
Demandgorage _ Supplygiorage )
region; region;
Y Demdﬂdswmgé r Suppl)'sloragé

region; region;

Figure 4: Formulation of the data placement problem.

Among the expressions in Figure 4, R(table;) is the only

decision variable, which determines the home region of table;.
The region in which job; is placed is represented by R(job;),
which is not a decision variable and is inferred from the place-
ment of tables. A job may access multiple tables. For Spark
or Presto jobs, the home region of the majority of the tables
accessed by the job determines R(job;). For an ML training
Jjobj, if the home regions of all tables accessed by the job are
the same, then their home region determines R(job j). Other-
wise, Tetris sets R(job;) to NULL temporarily, and will fix
it at a later stage by replicating tables to ensure that at least
one region has all these tables (§3.5). Note that while a Presto
or Spark job can read some of its input tables across regions,
an ML job must read all its input tables from the local re-
gion. This difference is due to the fact that GPUs used by
ML jobs are much more costly and should not be stalled on
reading data during execution. Further note that R(job j) is
an auxiliary variable used when determining R(table;). After
the completion of table placement on the slow path, MAST’s
real-time job scheduling on the fast path (§4) has the freedom
to place the job in a region different from R(job j), depending
on the available resources and table replicas at the scheduling
time. Similarly, all the Demand variables are also auxiliary
variables, inferred from R(table;) and R(job;).

Other symbols are defined as follows: size(table;) (size
of a table), CPU(job;) (CPU hours required by a job),
GPU(job,) (GPU hours required by a job), and GPU-Typejobj
(types of GPUs required by a job) are estimated from the
past history of the tables and jobs. storage_capacity(r),
CPU_capacity(app, r), and Supply, are set by the adminis-
trator. The weights, wyi, w, w3, wp, , and Wijob > can be tuned
by the administrator to prioritize certain terms or jobs.

I(a,b) is a binary operator that evaluates to 1 if its two
operands meet certain conditions and O otherwise. Specifi-
cally, I(R(job;), R(table;)) checks if the job and the table are
in the same region. /(R(job,),region,) checks if the job is
placed in region r. I(R(table;),region,) checks if the table is
placed in region r. [ (GPU—Typejobj,R(job ;7)) checks if job,’s
region has the needed type of GPUs to run the job.

Expression | aims to minimize the total size of tables that
are read across regions, i.e., when job; needs to access table;
but they are not in the same region. The notation table; € job;
denotes the tables accessed by job . For an ML training job;,
if its home region R(job;) is NULL (i.e., the home regions of
the tables accessed by the job are not the same), Expression |
will assume that all of these tables are accessed across regions.

Expression 2 soft-balances the supply and demand of GPUs
across regions. GPU;j is a specific type of GPU and P is a

job priority level. Demandrglg,ig';’fpk is the demand for GPU; at
regio

region; at priority level Py. SupplprU;" is the supply for GPU;;
at region;. Demands and supplies are measured in GPU hours.
Expression 7 minimizes the imbalance of supply and demand
across regions. If the load is perfectly balanced, Expression 7
is zero. Expression 8 minimizes region oveload. Without
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overload, Expression 8 is a constant, sigmoid(0) = 0.5. As
the region becomes more severely overloaded (i.e., demand
above supply), Expression & approaches 1, and the attempt to
minimize Expression 8 would lead to reducing overload.

Expressions 3 and 9 soft-balance the supply and demand of
storage space across regions. However, there is no term similar
to Expression 8 to minimize storage space overload, as it is
disallowed to allocate more space than available, enforced
by Expression 4. Similarly, Equation 5 ensures that every
region’s CPU demand is below supply. Note that there is no
such hard constraint for GPUs, as it would often lead to an
unsolvable problem due to GPU scarcity.

Expression 6 only applies to time-sensitive high-priority
jobs, ensuring that most of these jobs are trained in their home
regions, i.e., satisfying the training-at-home-region property.
Moreover, we empirically validate but do not mandate that
the number of jobs satisfying this property does not decrease
over time.

3.4 Efficient Approximate Solution

The MIP problem in Figure 4 is NP-hard. Tetris uses a hill-
climbing algorithm [26] to compute an efficient approximate
solution. Starting from the current placement, Tetris goes over
each table and finds the best region for it out of different home
region choices. The best region should have the lowest cost
(Expressions 1-3) and can satisfy all constraints (Expressions
4-6). If the best region differs from the current home region
of the table, the table is added to a move queue. The queue is
ordered by the gain of table moves, i.e., the initial cost before
the move minus the new cost after the move.

After determining the new home region for all tables, Tetris
iterates over the queue to move tables, starting from the ta-
ble with the highest move gain. Before moving a table, it
recalculates its best region because moving tables in prior
iterations may have changed the cost of moving this table.
The moves continue until either the queue becomes empty
or a daily move quota is reached due to limited cross-region
network bandwidth. Tetris runs this algorithm daily which
takes about five hours to complete, although the actual data
replication may take much longer to finish.

To move a table, Tetris replicates the table to the new home
region before deleting its data in the old home region. A
data-migration service schedules and executes cross-region
data replication. Tetris can set a soft deadline for a migration
operation, and the migration service allocates the necessary
bandwidth accordingly. Our network’s cross-region traffic
receives differentiated quality of service to ensure that back-
ground bulk data replication does not affect latency-sensitive
services. As for the data-replication size, the P50 (50th per-
centile) is 565MB, the P90 is 103GB, and the P99 is 7.5TB.
In terms of data transfer time, the P50 is 2.1 hours, the P90 is
3.7 hours, and the P99 percentile is 4.9 hours.

It is possible that the new home region becomes suboptimal
during the move due to various reasons. Typically, the next

day’s rerun of Tetris will correct the problem. However, if
MAST needs to schedule the corresponding job before the
rerun, it can use heuristics to determine whether on-demand
data movement is needed to temporarily fix the issue.

In addition to the hill-climbing algorithm, we have evalu-
ated other solutions such as commercial MIP solvers [12, 18],
but a comprehensive comparison with local-search alterna-
tives is yet to be conducted. We chose hill-climbing for several
reasons. Firstly, it offers greater scalability than other solu-
tions we have explored. Secondly, hill-climbing simplifies
the definition of the MIP problem formulation. As mentioned
in §3.3, R(table;) is the sole decision variable, with R(job)
inferred from R(table;), and GPU and storage demands per
region further inferred from R(job;). In traditional MIP for-
mulas, R(job j) must also be declared as a decision variable
constrained by R(table;), and the same must be done for all
demand requirements. This would lead to mathematical for-
mulas much more complex than those shown in §3.3. In
contrast, with hill-climbing, we can compute R(job;) and de-
mand requirements from R(table;) using code, which offers
more flexibility. Lastly, the outputs of hill-climbing are inter-
pretable and easy to debug, as we understand the exact reasons
to migrate tables in each iteration. Given that hyperscale ML
training is still relatively new and the problem formulation
continues to evolve, the interpretability and debuggability of
hill-climbing present significant advantages.

3.5 Creating Extra Table Replicas

In addition to a table’s home region, it may have replicas in
other regions for various reasons. For disaster recovery (DR)
purposes, each table has a replica outside of its home region.
The region that stores the DR replica is selected based on
a DR policy, which takes into account factors such as the
probability of correlated regional failures and the availability
of hardware to handle increased load after a disaster.

After the hill-climbing algorithm finishes, some ML jobs
may not be able to run in any region, because their home
region R(job;) is NULL or does not have the type of GPUs
needed by the job. The DR copy may fix some of these jobs,
and for the remaining ones, Tetris creates additional replicas
of the tables accessed by them in other regions, allowing them
to be scheduled there. For example, suppose table; is accessed
by job, and job,, which require GPU; and GPU,, respectively.
However, GPU; and GPU, are not available together in any
region. Thus, Tetris may set R(table;) to be a region that has
GPU; to run job, and then create a replica of the table in a
region that has GPU, to run job,. If multiple regions have
GPU,, Tetris selects the region with the highest supply.

A small fraction of tables, known as hot tables, are accessed
by a large number of jobs (Figure 3). If these tables are repli-
cated to only a few regions, it may create a significant load
imbalance, as a large number of jobs dependent on these ta-
bles will be forced to run in a few regions. To address this
problem, Tetris widely replicates hot tables per GPU type.
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Scope of job queue management
Cluster  [Regional| Global
Scope of | Cluster (1) Borg, Hydra, 2) 3)
resource . Yugong
allocation Regional @ x o) (6) MAST
Global X @) X |(9) “Ideal”

Table 1: Design space partitioned by the scheduling scope.
The symbol X indicates invalid solutions.

For each region and each GPUj;, Tetris computes the region’s
storage quota for GPU; based on the supply of GPU;. Tetris
sorts tables accessed by jobs using GPU; based on the tables’
hotness, and replicates as many hot tables as possible until it
reaches the storage quota for GPU ;.

Extra table replicas provide MAST’s fast path with greater
flexibility to choose the region for hosting a job at runtime.
However, replicating a massive amount of data across regions
could take hours, delaying the start of some time-sensitive
jobs. To address this problem, Tetris takes a combination of
measures. First, Expression 6 enforces that sufficient jobs are
trained in their home regions. Second, instead of replicating
the whole table, Tetris can be configured to only replicate the
partitions needed by the training job. Finally, Tetris prioritizes
first replicating data needed by high-priority jobs to meet their
deadlines.

Overall, the additional table replicas created by Tetris in-
crease storage consumption by approximately 75% to 125%.
However, given the high cost of GPUs, we deem this a justifi-
able trade-off.

4 Fast-path Job Scheduling

While the slow path asynchronously prepares data for ML
training, the fast path schedules ML workloads in real-time.
Before presenting MAST’s scheduling solution, we explore
the design space to understand its rationale.

4.1 Exploring the Scheduling Design Space

Traditionally, the federation approach [10, 20, 28] employs
early binding, dispatching a new job to a cluster based on
the current estimated cluster load, even if the cluster has no
available resources to run the job immediately. In contrast,
MAST adopts late binding, dispatching a job to a cluster only
when certain that the cluster has available resources to run the
job immediately.

Moreover, traditional scheduling systems handle all
scheduling functions at the cluster scope: job queue manage-
ment, resource allocation, and container orchestration. Below,
we explore solutions that manage job queues and resource
allocation at the regional or global scope.

Comparing solutions. Table | shows the solution space.
Solution (1) is the traditional approach, with Borg [48] as an
example, where job queue, resource allocation, and container
orchestration are all managed at the cluster scope. Solution (6)

is our approach, where the job queue is managed at the global
scope and resource allocation is managed at the regional scope.
Solution (9) is the “ideal” approach, where both the job queue
and resource allocation are managed at the global scope. With
a global view of all jobs and machines, theoretically, it can
achieve optimal job placement, but the limited scalability of
this approach is a main shortcoming.

For ML training workloads, it can be proven that among
algorithms that schedule one job at a time, MAST achieves
the same optimal job placement as (9) due to several rea-
sons. First, all tasks of a training workload must be allocated
to the same region for locality, simplifying resource alloca-
tion calculations to within regions. Moreover, following the
exhaustive-search principle, MAST computes a resource al-
location plan for the workload in every region with training
data, and then chooses the best plan for execution. As a result,
it can achieve optimal placement for individual workloads.
However, solution (9) has an advantage over MAST in jointly
optimizing the placement of a set of workloads. For instance,
after MAST places workload 1 in region X, it may discover
that no region can accommodate workload 2. In contrast, so-
lution (9) may intentionally place workload I in region Y and
leave region X to handle workload 2.

Solutions (2), (3), and (5) improve upon solution (1) as
they can either better balance the load or manage allocation
at a larger scope, but they still cannot provide the same level
of scheduling quality as (6). Solutions (4), (7), and (8) are
invalid as their scope of resource allocation is bigger than
their scope of job queue management. Among the solutions
in Table 1, assuming (9) is not scalable, our preference is
©)>3)>05)>2)> ().

Federated systems. Hydra [10] and Yugong [20] use the
federated approach. Both fall under solution (1) as they em-
ploy early binding of a job to a cluster, and then manage the
job queue and resource allocation with the cluster. This ap-
proach aligns well with the nature of lightweight analytics
jobs, the focus of Hydra and Yugong. Such jobs demand high
scheduling throughput but typically do not involve complex
decisions like job preemption.

4.2 Global ML Scheduler (GMS)

Adhering to the scope-decoupling principle and as illus-
trated in Figure |, MAST splits the scheduling responsibil-
ities among different components: the Global ML Sched-
uler (GMS) manages the global job queue, the Regional ML
Scheduler (RMS) allocates regional resources, and the Cluster
Manager (CM) is responsible for container orchestration.

The main responsibility of GMS is to select the next work-
load to schedule among all pending workloads in the global
job queue. For each pending workload, GMS calculates a
<priority, credit> tuple. It schedules the workload with the
highest priority and, in case of a tie, selects the one with the
highest credit for scheduling.

The priority is affected by quota usage. Each workload
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belongs to a tenant, i.e., a team. Tenants are assigned a priority
level and a quota for running their workloads. The quota
specifies the maximum number of GPUs and CPUs that a
tenant can use simultaneously. Workloads from a tenant that
has not exhausted its quota are assigned the tenant’s priority,
categorized as within-quota workloads. Conversely, when
a tenant has used up its quota, its workloads are assigned
the lowest priority and categorized as over-quota workloads.
These workloads run opportunistically and can be preempted
when a higher priority workload arrives. Tenant priorities
are manually assigned based on business priorities. The strict
adherence to these priorities does result in preemption, which
is the intended effect. Currently, MAST uses seven priority
levels. The distribution of workloads across these priorities
(from highest to lowest) is as follows: 3%, 20%, 16%, 54%,
0.2%, 0.5%, and 0.02%. The remaining 6% of workloads
do not specify a priority and are consequently treated as the
lowest priority.

The credit of a workload is calculated as follows. Intu-
itively, a workload W has a higher credit if it has been waiting

longer (Expression 10) or belongs to a tenant that has used
fewer resources than others (Expression 11).

credit(L) = Wyorkload_age X min(L.age, Cage_cap) (10)
window_avg(L.tenant.resources_used)
window_avg(all_tenants.resource_used)

a1

+ Weair_share X (1

Here, L represents a workload, Cage_cap 1S a constant, and
Wworkload_age aNd Wiair_share are tunable weights.

To determine the <priority, credit> tuple for a workload,
GMS calculates each workload’s credit and sorts pending
workloads based on it. It scans them to assess if they can
be scheduled within their tenant’s quota. GMS maintains a
resource_used variable for each tenant, initialized to include
resources used by the tenant’s running workloads. When scan-
ning a pending workload W, GMS checks if adding W’s re-
source requirement to resource_used would exceed the ten-
ant’s quota. If so, W is assigned the lowest priority level;
otherwise, W inherits its tenant’s priority level, and GMS
updates the tenant’s resource_used to include W’s resources.

Periodically, GMS executes a GMS-scan pass to update
<priority, credit> tuples for all pending workloads. This ap-
proach is chosen because the state change of one workload
may impact others’ < priority,credit>. Specifically, a work-
load’s credit is influenced by other tenants’ resource usage
(Equation 11). Additionally, a workload’s priority is tied to its
tenant’s other workloads’ resource usage. This updating-all-
workloads strategy enables MAST to implement sophisticated
quota and priority management policies. The scalability of
GMS with this approach depends on the frequency and dura-
tion of the GMS-scan pass.

4.2.1 Scalability of GMS

In practice, GMS scales well for ML workloads due to several
factors. First, ML training workloads, running for extended
periods on many machines, necessitate higher-quality schedul-
ing decisions but lower scheduling throughput compared to

short-lived batch jobs [10,38,41,50]. Second, GMS has min-
imal responsibilities, calculating <priority,credit> for each
pending workload and storing it in the job-queue database.
Placement plans are computed by RMS, not GMS. Third,
our evaluation in §5.4 indicates that the current GMS imple-
mentation can support workload growth by a factor of 8.8.
Finally, currently implemented in Python for simplicity, if it
becomes a bottleneck, we plan to scale it further by a factor
of 10-100 by switching to C++ and parallelizing computation
for different tenants.

4.3 Regional ML Scheduler (RMS)

RMSs perform auctions in a distributed manner to schedule
ML workloads. Each RMS constantly checks the job-queue
database maintained by GMS, and attempts to schedule the
ML workload with the highest < priority, credit>.

To schedule a workload, an RMS consults a real-time com-
ponent of Tetris to check whether its local region has the
required data and necessary hardware types. If not, the RMS
abandons the auction. If all RMSs abandon the auction, poten-
tially occurring with the first-time execution of a new work-
load, MAST will start data replication, waiting for its comple-
tion to ensure some regions have both the necessary data and
hardware.

Typically, due to Tetris, multiple regions have the required
data and hardware types for the workload. Following the
exhaustive-search principle, in each such region, RMS calcu-
lates a placement plan for the workload along with a corre-
sponding placement-quality score (Py,r.). RMSs engage in
an auction to identify the RMS with the highest Ps¢,r., Which
will execute the workload. If no region can generate an imme-
diate placement plan for the workload, it enters the waiting
state.

A region may have multiple ML dynamic clusters, and the
workload can comprise multiple jobs, each assignable to a
different cluster. Adhering to the exhaustive-search principle,
for each job in the workload, RMS calculates a placement
plan and Py, for every ML dynamic cluster in the region. It
chooses the cluster with the highest Py, to host the job. The
overall Py, for the workload is determined by summing up
the Py, for each job in the workload.

When comparing two placement plans for a job, the one
with a higher Py.,r Wins. A plan has a higher score if it uses
available resources to run the new job without preempting
any running jobs. If preemption is necessary, a higher score is
achieved by preempting jobs with lower priority, fewer jobs,
or those running for a longer duration. The last condition
implies refraining from preempting newly started jobs.

To generate a placement plan for a job in an ML dynamic
cluster, RMS checks if it can allocate the job using available
resources without preempting running jobs. For enhanced
task locality within the same job, RMS sorts available ma-
chines based on rack IDs, allocating machines in the same or
nearby racks in batches. While scanning, RMS aims to use
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the minimum number of machines by prioritizing those with
the highest available CPU/GPU resources.

If preemption is necessary, RMS prioritizes preempting
lower-priority jobs. It sorts all running jobs based on priority
and running time, initiating the scan with the job having the
lowest priority and longest running time. The scanning pro-
cess continues until sufficient resources are found to execute
the new job, combining available resources with those to be
released through preemption.

RMS minimizes preempted jobs. For example, if a new
job needs 10 GPUs and the scan reveals options of 4, 5, and
12 GPUs by preempting job, job,, and job; respectively, the
optimal choice is preempting job; without affecting job; or
job,. To achieve this, RMS re-sorts preempted jobs by size,
prioritizing larger jobs first.

Multiple optimizations improve RMS performance, with
the most effective being the use of a negative cache. When
RMS cannot allocate resources for a job, it saves the decision
in the cache. If it later attempts to allocate a job of the same
or larger size, the cache signals that the allocation will fail.
Specifically, the negative cache is initialized at the start of
every GMS-scan pass that examines all pending jobs, and is
cleared after the GMS-scan pass finishes. It is implemented
as a hashtable that stores the scheduling properties of the jobs
that could not be scheduled during the GMS-scan pass. These
scheduling properties encompass the number of GPUs and
CPU cores requested by the job, memory, hardware type, and
so on. Such information consumes little memory, and there is
no need for cache eviction during a GMS-scan pass. Overall,
the negative cache is highly effective as unsuccessful place-
ment attempts far outnumber successful ones due to nearly
constant full resource allocation. It filters out the majority of
these unsuccessful attempts early on, thanks to a cache hit
rate of about 80% in practice.

4.3.1 Scalability of RMS

RMS demonstrates sufficient scalability, as evidenced by the
analysis below. Scalability is examined concerning the num-
ber of regions (r) and the amount of ML hardware per region
(h). Adding more regions does not increase the computation
load of RMS, as it schedules workloads only for data stored
in the respective region. When & remains constant, the num-
ber of such workloads also remains unchanged. However,
linear growth in /4 results in quadratic growth in RMS’s com-
putation load. The complexity of RMS’s exhaustive search
is E(h) = O(D(h) x J(h)), where D is the number of ML
dynamic clusters and J is the number of jobs scheduled on
these clusters. As both D and J are proportional to A, E(h)
experiences quadratic growth.

Our evaluation in §5.4 demonstrates that RMS can handle
a 12x increase in & compared to our current production load.
This scalability is likely sufficient even for the long run, given
that the growth of % is constrained by the fixed electricity
supply of a datacenter region. Currently, the largest RMS

manages around 20 dynamic clusters, comprising a total of
64,000 CPU machines and 20,000 GPUs. In the improbable
scenario of RMS becoming a bottleneck, we plan to paral-
lelize scheduling for non-conflicting workloads with training
data in non-overlapping regions. Additionally, if needed, RMS
can be sharded to scale out, with each shard handling a subset
of ML dynamic clusters.

4.4 Cluster Manager

Our cluster manager (CM), Twine [44], has the distinguishing
feature of managing a dynamic cluster whose machine mem-
bership may be continuously updated by RAS [36]. The CM
instances managing ML and non-ML clusters are separate and
do not interfere with each other, while RAS can dynamically
move machines between them to avoid stranded capacity.

We choose not to use a single, generic cluster to handle
mixed ML and non-ML workloads, as it is suboptimal for
our large-scale operations. Our large fleet size necessitates
partitioning machines into independent clusters for effective
management. Combining ML and non-ML workloads in a
cluster compromises optimization for either type, whereas
our scale benefits significantly from workload-specific opti-
mization. For instance, online services prefer spreading across
fault domains, whereas ML training workloads prefer not to be
spread widely for better network performance. Furthermore,
as gang jobs, ML training workloads prefer, for example, 10
out of 100 jobs to fail entirely while the remaining 90 jobs
continue, as opposed to each job experiencing a 10% task
termination. Optimizing for spread would lead to the latter
undesirable situation. Previously, CM handled these complex
differences between ML and non-ML workloads on the fast
path of real-time job scheduling, often resulting in subopti-
mal choices due to limited computation time. Consequently,
we adopted the strategy of RAS running on the slow path to
pre-built separate ML and non-ML dynamic clusters that are
deeply optimized for respective workloads, while simplifying
the responsibilities of CM on the fast path.

CM and RMS collaborate in managing workloads. For ex-
ample, when new machines are added to an ML dynamic
cluster, the corresponding CM notifies RMS of this change.
With complete information cached in its memory, RMS can
efficiently compute placement plans. When a region’s place-
ment plan is selected as the best plan for execution, its RMS
directs the corresponding clusters’ CMs to execute the plan
and run the relevant jobs. This may require preempting run-
ning jobs and checkpointing their current status, initializing
containers for the new jobs, and restoring their job states if
they were previously preempted.

4.5 Fault Tolerance

GMS, RMS, and CM are fault-tolerant and highly available,
operating in a leader-follower mode. Specifically, two in-
stances of GMS run in different regions, two instances of
RMS operate in the same region, and three instances of CM
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serve the same cluster. They all follow a stateless design, stor-
ing their persistent state in a shared and replicated database.
In the event of a leader failure, the follower can reconstruct its
state from the database and the lower-level component (i.e.,
GMS from RMS and RMS from CM).

4.6 Limitations

In our hyperscale production environment, we prioritize im-
plementation simplicity and robustness, leading to some im-
plementation limitations rather than inherent design flaws.
One such limitation is the inability to distribute a job’s tasks
across different clusters, despite the capability to allocate
workload jobs to various dynamic clusters. RMS can compute
a placement plan for distributing a job’s tasks across different
clusters by leveraging its comprehensive view of all resources
in the ML clusters within the region. However, the integration
with our cluster manager [44]’s “virtual job” feature, crucial
for effectively managing scattered tasks as one virtual job, is
not yet implemented.

Another implementation limitation is that currently, RMS
schedules only one ML workload at a time. While it par-
allelizes the computation of placing multiple jobs from
one workload into different clusters, it does not commence
scheduling the next workload until a decision has been made
for the current one. This simple approach is used because it is
adequate and still has headroom to support further growth, as
discussed in §5.4. Howeyver, if a bottleneck arises in the future,
we are prepared to transition to scheduling multiple work-
loads in parallel. Moreover, scheduling multiple workloads
simultaneously presents opportunities for enhancing schedul-
ing quality. Note that although the current implementation
schedules one ML workload at a time, different workloads
can still run in parallel. Once a workload X is dispatched to
run, without waiting for X to finish execution, the scheduler
immediately schedules the next workload Y.

S Evaluation

Our evaluation attempts to answer the following questions:
1. What are the important ML workload statistics?

2. Can MAST achieve a high resource allocation rate?

3. Is Tetris effective in ensuring colocation of data and com-
pute resources?

4. Are GMS and RMS sufficiently scalable?
5. How long does it take to schedule a workload?

6. How does MAST compare with alternative solutions?

5.1 ML Training Workload Statistics

Currently, MAST is scheduling tens of thousands of ML
training workloads daily across tens of regions, consuming
0(100,000) GPUs and O(100,000) CPU machines. About
70% of the workloads use GPUs for training, while the remain-
ing use CPUs for training. About 30% of the workloads are
recurring, while the remaining are first-time workloads. On

100%

98%
96%
94%

92%
90%

GPU Allocation Rate

Time Over Two Weeks

Figure 5: GPU allocation rate.

average, each workload gets preempted once, which leads to
about 100,000 scheduling attempts daily. High-priority work-
loads may never get preempted and low-priority workloads
may get preempted multiple times.

In terms of the number of machines utilized by a work-
load, the values for the 50th, 90th, and 99th percentiles are
72, 180, and 205, respectively. As for the number of GPUs
used by GPU-consuming workloads, the 50th, 90th, and 99th
percentiles are 16, 64, and 128, respectively, and the largest
workload today, LLM pre-training, uses tens of thousands of
GPUs. We measure the duration of workloads in terms of
their execution time until the subsequent preemption, as it is
more pertinent for a scheduling system. For GPU workloads,
the 50th, 90th, and 99th percentiles of the duration are 20
minutes, 6.7 hours, and 66 hours, respectively. As for CPU
workloads, the corresponding percentiles are 38 minutes, 7.9
hours, and 38 hours. Overall, training workloads run on many
machines for an extended period. Therefore, it is worthwhile
to spend time computing high-quality scheduling decisions.

5.2 Effectiveness of Global ML Scheduling

Thanks to the flexibility of placing both data and workloads
globally, MAST has achieved a high average allocation rate
of 98% for its GPU machines, as shown in Figure 5. The
2% loss is due to factors such as the overhead of preemption,
inherent latency of scheduling, and imbalanced data and GPU
distribution across regions. The allocation rate is determined
by dividing the total hardware hours allocated to workloads
by the total available hardware hours. Note that the GPU allo-
cation rate differs from GPU utilization because even if some
GPUs are allocated to a workload, they may be underutilized
due to various factors, such as the workload’s internal commu-
nication bottlenecks. We use the allocation rate as the metric
because it is more relevant for a scheduling system, which is
the primary focus of this paper, while GPU utilization is more
pertinent for the ML training framework.

In comparison, the allocation rate for CPU machines is
lower. Dedicated CPU machines for ML workloads have an
allocation rate of 87%, while elastic CPU machines, which
are borrowed temporarily from non-ML workloads, have an
allocation rate of 72%. The lower allocation rate for CPU ma-
chines is largely due to slight overprovisioning to guarantee
that costly GPU machines are never left idle due to a lack of
available CPU machines to work with.
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5.3 Effectiveness of Data Placement

Figure 6 shows the percentage of workloads that cannot sat-
isfy the data-GPU-collocation property (§3.1) and thus have
to wait for on-demand data movement to complete. The non-
collocation rate is usually below 0.1%, demonstrating the
effectiveness of Tetris. Although Tetris creates extra table repli-
cas to increase the collocation rate (§3.5), non-collocation
may still occur due to a workload appearing for the first time
or due to machine maintenance rendering certain data or
hardware unavailable. Considering 70% of our workloads are
first-time ones, this figure shows most of them can still benefit
from the data placement planned for recurring workloads.

Thanks to Tetris, often multiple regions can host the same
workload, which gives MAST the flexibility to migrate the
workload across regions on different days. In Figure 7, the
“candidate regions” have the required training data and hard-
ware types to host a workload, while the “executing regions”
have actually hosted the workload on different days. As shown
in the figure, the majority of workloads have two or more can-
didate regions, and approximately 40% of them have four
or more. The number of executing regions per workload is
smaller; roughly 30% of the workloads have more than one
executing region, indicating they are relocated across regions
during this period. This demonstrates that global ML schedul-
ing indeed works as intended to dynamically optimize work-
load placement across regions.

Figure 8 shows the amount of data that Tetris move daily.
The spikes in the planned movement are due to onboarding
a new workload, which caused a large amount of data to be
moved across regions. However, the data migration service
has a limit on the maximum amount of data moved per day.
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Figure 8: Daily data movement by Tetris.
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Figure 9: The latency of a GMS-scan pass in GMS (each data
point is the average latency within one hour).

Therefore, the actual amount of data moved per day is flat-
ter. This figure shows that Tetris proactively moves hundreds
of petabytes of data across regions daily. This enables the
fast path to more easily colocate computation with data, and
achieve the high GPU allocation rate of 98%.

Tetris’s hill climbing algorithm runs daily on a single ma-
chine and it typically takes about five hours to finish. Although
its CPU utilization is not very high, it spends a significant
amount of time on I/Os to fetch various metadata necessary
for computing the data placement plan. Currently, the perfor-
mance of Tetris is not a major bottleneck, and can be further
optimized as needed.

5.4 Scalability of GMS and RMS

Scalability of GMS. GMS periodically computes the
<priority,credit> tuples for all workloads (§4.2). We re-
fer to one round of such computation as a GMS-scan pass.
The scalability of GMS depends on the frequency and latency
of the GMS-scan pass. Although its theoretical complexity
is O(NlogN) due to sorting, where N is the number of work-
loads, its actual execution time is approximately O(N), dom-
inated by the sequential computation of <priority,credit>
for each workload. Figure 9 shows the average latency of
the GMS-scan pass. On average, it takes approximately 34
seconds for GMS to rank 6,000-10,000 workloads. Our eval-
uation shows that running the GMS-scan pass once every 5
minutes still produces high-quality scheduling. This implies
that GMS can support % = 8.8 times more workloads.
As described in §4.2.1, if needed, we can scale the GMS by
another factor of 10-100 by switching from Python to C++
and parallelizing its computation for different tenants.
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Figure 10: Average latency of scheduling a workload at the
slowest RMS. It is computed by taking the maximum of the
average latencies computed at each RMS every minute.

Scalability of RMS. Since our current RMS implementa-
tion does not initiate scheduling of the next workload until a
decision has been made for the current one (§4.6), the maxi-
mum throughput of RMS can be estimated from its latency
to schedule a single workload. As shown in Figure 10, the
slowest RMS takes approximately 1.3ms and 5.5ms to sched-
ule a workload without and with preemption, respectively.
Even assuming that all scheduling requires preemption, the
RMS can schedule 24*3600*1000/5.5=15 million workloads
per day. Considering the current throughput of about 100K
scheduling attempts per day and the quadratic growth of the
computation load caused by exhaustive search (§4.3.1), the
RMS can support approximately \/% =12x more workloads
and 12x more ML hardware. See §4.3.1 for a discussion on
how to further scale RMS.

5.5 Scheduling Latency

Figures 11(a) and (b) show the average and P95 latency, re-
spectively, for pending workloads to enter the running state,
including queuing delay, scheduling-algorithm run time, and
preemption time but not workload execution time. The pre-
emption time is a major factor in the total delay. If workload
A preempts B, rescheduling B counts as a new scheduling
event in these figures, starting from the time B is preempted
to the time B runs again. The preemption time of B counts
towards A’s latency as A needs to wait for the preemption
to finish. One primary service level objective for MAST is
P95 latency. These figures show that MAST has maintained
consistently low latency for within-quota workloads. How-
ever, for over-quota workloads, the latency can occasionally
be erratic, depending on the workload mix. This emphasizes
the importance of distinguishing between within-quota and
over-quota workloads.

To start a workload, MAST needs to acquire containers from
the cluster manager and set up all containers. The P50 latency
of this step is 150 seconds, while the P90 is 278 seconds, and
the P99 is 449 seconds. For massive LLM jobs, the whole
process could take 10 minutes or longer.
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Figure 11: Latency for a pending workload to start running.

5.6 Comparison with Alternative Solutions

Tetris. The closest work to Tetris is Alibaba’s Yugong [20],
which uses MIP to place data for analytics jobs based on CPU
(but not GPU), storage, and network constraints. It enforces
hard quotas and would not produce a solution when resources
are insufficient. However, as GPUs are scarce in our envi-
ronment with consistently higher demand than supply (§3.2),
Yugong would never provide a solution.

Since Yugong is not comparable to Tetris, we evaluate
Tetris’s different versions to demonstrate the importance of its
key features. In the initial stage (V0O) of MAST, users manu-
ally selected regions for table placement, and tables could not
migrate across regions. In 2022, V1 was developed, which
automated data placement, aligning with the approach in Sec-
tion 3, albeit with key distinctions. V1 was a major improve-
ment over VO, reducing the GPU demand-over-supply ratio
for high-priority jobs in the most overloaded region from 2.63
to 0.98, with the standard deviation dropping from 0.76 to
0.30. Moreover, it boosts the training-at-home-region rate
from 90.82% to 93.02%.

Despite V1’s success, various limitations prompted the
development of V2. As described in § 3.3, key differences
include V2 penalizing GPU overload more than penalizing
underload, and incorporating soft-balance alongside hard-
quota for storage. Additionally, V1 defined the collocation
rate uniformly for all workloads, treating small and large, high-
priority and low-priority workloads alike. Recognizing the
practical importance of large high-priority workloads, V2 has
revised this definition to be the demand (i.e., GPU hours) of
high-priority workloads that can satisfy colocation. With these
enhancements, V2 significantly increased the collocation rate
under the new definition from 78% to 96% compared to V1.

Fast-path Scheduler. We built a simulator to evaluate differ-
ent scheduling algorithms of the fast path. The simulator takes
a trace of past workloads as input, and follows the same logic
of MAST’s fast-path scheduler, excepts that it does not actu-
ally execute a workload, but instead assumes its running time
is the same as recorded in the trace. For comparison, we mod-
ified the simulator to implement a federated approach, which
dispatches a workload to the region with the lowest demand
over supply rate of the required GPU type. When playing an
8-hour trace to the simulator, we find that for MAST, the rate
of workloads violating SLOs stays below 1.3% all the time.
For the federated approach, however, the SLO violating rate

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 575



is much higher, especially when load is high. High-priority
workloads suffer more, reaching a 50% SLO violating rate
during busy hours. This is because high-priority workloads
often need to preempt low-priority ones to guarantee SLOs,
but with a simple heuristic, the federated approach may not be
able to dispatch a high-priority workload to the right region
where it can preempt others.

6 Discussions

Solutions suitable for smaller organizations. While MAST
is designed for hyperscalers, some of its principles can be
applied to smaller organizations. If a small organization only
needs to run training workloads in a single cluster, implying
one region, then it does not need any of MAST’s advanced
capabilities. However, in the event of a power or network
outage affecting the region, it would be unable to run any ML
training jobs due to the lack of disaster-recovery capability.

If an organization’s infrastructure operates in at least two
regions to be disaster ready, then it can leverage the key ideas
in MAST. Without MAST, they would default to solution (1)
in Table 1, leading to suboptimal resource allocation due to
the isolated operation of the two regions. With insights from
MAST, if the scale of their infrastructure is small enough to
be handled by a single resource allocator, they could adopt
solution (9), yielding optimal placement results. If they do
not want to significantly modify their cluster manager like
Kubernetes [27], they could at least adopt solution (3), which
involves a relatively minor change to use a global job queue
but still offers significant benefits in balancing the load across
regions. Furthermore, if they cannot afford to replicate ev-
ery table across every region, they would need a component
similar to Tetris to intelligently determine data placement.

Future work. Currently, Tetris considers storage quota and
network bandwidth as hard constraints. It is valuable to under-
stand the impact of adding storage and cross-region network
bandwidth to better utilize expensive GPUs.

For scalability, Tetris currently determines home regions
(§3.2 to §3.4) and creates additional table replicas (§3.5) in
separate steps. We plan to explore whether there exists an
efficient MIP problem formulation that can simultaneously
determine the optimal number of replicas and the home region
for each table. It is important that such a problem formulation
can be solved in a scalable manner.

Finally, we plan to leverage the fact that the slow path
(Tetris) not only determines data placement but also, as a
byproduct, calculates the placement of recurring jobs. The lat-
ter is currently overlooked by the fast path when placing jobs.
Because unexpected one-time jobs may make some of the
slow path’s job placement decisions unfeasible or suboptimal,
future research is needed to better connect the fast and slow
paths. This would allow us to benefit from the job-placement
decisions that the slow path has more time to compute.

7 Related Work

Scheduling within a cluster. There are many prior works
about scheduling within a single cluster, including general-
purpose schedulers [14,16,19,22,38,47,56] and those specific
to ML training [1,2,5-7,9,13,17,21,23-25,30,31,33-35,39,
40,45,49,51-54,57,59]. The latter often considers specific
characteristics of ML training, such as model accuracy, gang
scheduling, sensitivity to network topology, heterogeneity of
compute resources, elasticity, etc. Cluster-level scheduling is
largely orthogonal to the design principles of MAST, though
some of their ideas may be applicable in the cluster-level
placement algorithm of MAST.

Scheduling across clusters. Among existing systems, Yu-
gong [20] and Hydra [10] are the closest to MAST as they
can schedule jobs across cluster or datacenters, but they still
differ from MAST since 1) they perform early-binding at clus-
ter scope (§4.1), 2) they don’t take GPU into consideration
(§1 and §3), and 3) they rely on simple heuristics to dispatch
jobs to clusters. Finally, in the data warehouse hierarchy (hun-
dreds of namespaces—millions of tables— billions of data
partitions), Yugong places data at the namespace level (called
“projects” in the paper), whereas Tetris places data at the parti-
tion level, which provides more opportunities for fine-grained
optimization. However, Tetris’ fine-grained placement makes
the optimization problem about 10° times larger.

Singularity [43] is the only ML-specific global-scale sched-
uler we are aware of. However, the article does not disclose
details about the scheduling part, but focuses more on how to
provide elasticity to ML training jobs, and thus it’s impossible
for us to provide a concrete comparison.

8 Conclusion

This paper demonstrates that by utilizing the three design
principles of temporal decoupling, scope decoupling, and ex-
haustive search, we can build a global ML training scheduler
that can 1) scale to tens of regions and hundreds of thou-
sands of machines and 2) provide high-quality data and job
placement to achieve almost 100% allocation of GPUs.
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