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Abstract

In cloud systems, near-line logs are mainly used for debug-
ging, which means they prefer a low query latency for a
better user experience, and like any other logs, they also
prefer a low overall cost including storage cost to store com-
pressed logs and computation cost to compress logs and
execute queries.

This paper proposes LogGrep, the first log compression
and query tool that structurizes and organizes log data prop-
erly in fine-grained units by exploiting both static and run-
time patterns. It first parses logs into variable vectors by ex-
ploiting static patterns and then extracts runtime pattern(s)
automatically within each variable vector with a novel ex-
traction method. Based on these runtime patterns, LogGrep
further decomposes the variable vectors into fine-grained
units called “Capsules” and stamps each Capsule with a sum-
mary of its values. During the query process, LogGrep can
avoid decompressing and scanning Capsules that cannot
possibly match the keywords, with the help of the extracted
runtime patterns and the Capsule stamps.

We evaluate LogGrep on 21 types of logs from the pro-
duction environment of Alibaba Cloud, and 16 types of logs
from the public datasets. The results show that LogGrep can
reduce query latency and overall cost by an order of magni-
tude compared to state-of-the-art works. Such results have
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1 Introduction

Large-scale cloud systems log system events for several
purposes, such as system modeling [8, 25], error diagnos-
ing [15, 52, 72], user behavior profiling [16, 18, 41], and se-
curity attack detecting [19, 54]. Large cloud providers can
easily generate up to PBs of logs per day [45, 60, 69], and
thus often choose to compress these logs to reduce storage
cost; furthermore, they sometimes need to query these com-
pressed logs for the purposes discussed above.

We studied the log access pattern in Alibaba Cloud, a major
cloud provider and our collaborator. We observed these logs
can be categorized into three types: online logs are mainly
used for monitoring system states and are queried frequently;
near-line logs are mainly used for debugging and thus are
queried only when a problem occurs; after a certain period
of time (typically 6-12 months [58, 69]), logs will be archived
into offline logs.

The difference of their query patterns motivates different
trade-offs among compression ratio, compression speed, and
query latency. Online logs are queried frequently and thus
prefer methods with a low query latency [6, 33]. Offline logs
are almost never queried but need to be stored for a long
time, and thus prefer methods with a high compression ra-
tio [10, 13, 31, 45, 46, 48, 61, 67, 69]. Near-line logs require a
careful thought about the trade-off. First, our experiments
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show that the dominating cost varies depending on the com-
pression method and parameters like how long the logs will
be stored and query frequency. Second, though they are not
queried frequently, an engineer expects a query to finish as
quickly as possible, since a long query time will hurt her/his
productivity when debugging a problem. During the con-
versation with Alibaba Cloud engineers, we find they prefer
finishing a query within a few seconds, can accept a query
taking less than a minute, but feel frustrated if a query takes
several minutes or longer.

This paper targets designing a compression and query
method for near-line logs with two goals. First, it should try
to minimize the overall cost including computation cost to
compress logs, storage cost to store compressed logs, and
computation cost to query logs. Second, it should try to limit
query latency to an acceptable level. We have tested a number
of existing works including ElasticSearch [6], CLP [58], etc,
and found none can satisfy both goals. For example, it takes
14 minutes on average to execute a query using CLP, a state-
of-the-art approach to query on compressed logs.

Structurizing logs by exploiting static patterns. To achi-
eve both goals, we adopt a classic idea in data processing
systems—split data into multiple partitions, compress each
partition independently, and generate a summary for each
partition to avoid decompressing irrelevant partitions when
executing a query [12, 21, 42, 43, 63].

The key challenge in realizing this idea is how to partition
data, so that the content in each partition shares common fea-
tures, which will allow us to generate strict summaries to
filter as many irrelevant partitions as possible. To achieve
this goal, we leverage existing log parsing methods to struc-
turize log entries into templates and variables [23, 30, 31, 45,
51, 66, 67, 69, 76], because values of the same variable are
more likely to share common features [45, 69]. For example,
if an application has a log output statement “printf(“write
to file:%s”, filepath)”, log parsing methods can parse a corre-
sponding log entry into the template “write to file:” and a
variable “filepath”. Since the string template “‘write to file:”
is specified by the developer, we call the template a static
pattern in the rest of this paper. After parsing log entries, we
organize values of the same variable (called a variable vector)
into a partition. Compared to storing variable values follow-
ing their original order in the logs [3, 58, 73], our method
tends to store values that may share common features in the
same partition, which is beneficial for both compression and
generating strict summaries.

In our experiments, with a state-of-the-art log parser [69],
this approach can reduce query latency by about 5.72x and
improve the compression ratio by about 2.01X, compared
with CLP. However, many queries still take more than one
minute, which is still unacceptable. We found this is mainly
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because summaries generated for the whole variable vec-
tors are often still too general, which results in inefficient
filtering.

Further improvement by exploiting runtime patterns.
To further improve the filtering efficiency, our key idea is to
exploit runtime patterns within each variable vector. Unlike
a static pattern specified by a programmer, a runtime pattern
is generated by the application at run time. In our previ-
ous example, all values of “filepath” may follow a pattern
“/tmp/1FF8<*>.log”, which is a runtime pattern.

After exploring runtime patterns on a wide range of pro-
duction logs, we found they widely exist. These runtime pat-
terns can help to filter keywords and we find they have a key
feature: a variable part of the same runtime pattern (referred
as a sub-variable) often includes limited types of characters
and has a similar length. For example, in our filepath runtime
pattern “/tmp/1FF8<C; >log”, values of the sub-variable vec-
tor C; all include 4 hexadecimal characters. By exploiting this
key feature, we propose two optimizations. First, compar-
ing to partition data into whole variable vectors, we further
partition data into fine-grained sub-variable vectors and gen-
erate summaries on them. These summaries are stricter and
allow more effective filtering. Second, we pad the values of
each sub-variable vector to a fixed length to enable efficient
keyword search and locating methods with minimal impact
on compression ratio.

Extracting runtime patterns automatically, however, is
challenging. General-purpose pattern extraction algorithms [4,
50, 53, 75] are too slow given the scale of our logs. As a re-
sult, prior works extract log patterns by 1) analyzing the
source/binary code [7, 9, 70, 74], which only works for static
patterns, by 2) applying heuristics [23, 31, 36, 47], which
works well for static patterns but poorly for runtime pat-
terns, since runtime patterns are more versatile, or by 3)
setting default patterns or asking the developer to manually
provide patterns [58], which is certainly not ideal.

To address this challenge, we design a novel runtime pat-
tern extraction method based on the following observation:
variable vectors which do not include many duplicated values
are usually dominated by a single runtime pattern. Following
this observation, we first categorize variable vectors based
on how many of their values are duplicated. We call variable
vectors with a small percentage of duplicated values as real
variable vectors and variable vectors with many duplicated
values as nominal variable vectors. For real variable vectors,
under the assumption that they only include one pattern,
we design a tree expanding approach [35] to extract their
patterns, which has O(n) time complexity (n is the number
of unique values in the sub-variable vector) and can extract
finer runtime patterns. For nominal variable vectors, consid-
ering their values have many duplicates and we only need
to extract patterns on deduplicated values, the complexity
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Figure 1. Fine-grained storage format and reconstruction
process.

of the pattern extraction algorithm is less of an issue. There-
fore, we design a pattern merging approach [31, 47], which
has a time complexity of O(nlogn) but can extract multiple
patterns.

Based on these ideas, we have designed and implemented
LogGrep, a tool that can compress logs with a high compres-
sion ratio and support Linux grep-like commands on these
compressed logs. On 21 types of Alibaba Cloud production
logs and 16 types of public logs, we compare LogGrep with
CLP [58], a state-of-the-art method to compress and execute
text query on logs, ElasticSearch [6], a method focusing more
on query latency, and gzip+grep, the current method used by
Alibaba Cloud. Our evaluation shows that first, LogGrep can
usually complete a query within a minute: this is an order
of magnitude faster than CLP and gzip+grep, and compa-
rable to ElasticSearch. Second, by considering the storage
and computation cost in Alibaba Cloud, the overall cost of
LogGrep is 36% of CLP, 7% of ElasticSearch, and 34% as much
as that of gzip+grep.

Our contributions can be briefly summarized as follows:

e We propose LogGrep, the first log compression and query
tool that structurizes log data in fine-grained units. We
demonstrate that the proper structurization method en-
ables simple but effective summaries to accelerate queries
on compressed log data.

e To the best of our knowledge, LogGrep is the first one to
extract runtime patterns automatically to improve the data
filtering efficiency. To achieve that, we propose a novel
runtime pattern extraction method by separating real and
nominal variable vectors.

e We evaluated LogGrep on 21 types of real-world produc-
tion logs [64] and found LogGrep achieves a significant
query latency reduction and a considerable cost saving
over the state-of-the-art system.

e We have open-sourced LogGrep [65].
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2 Key Idea Roadmap

In Alibaba Cloud, applications first write raw logs, usually
in text format, into 64MB blocks. We call these blocks log
blocks. Then Alibaba Cloud compresses these log blocks in
the background.

In general, the log-based debugging procedure is executed
in two phases. In the first phase, the engineer may send
full-text query commands to find log entries that may be
relevant to the error. In the second phase, the query result
will be passed to another system, which performs more so-
phisticated analysis like anomaly detection, structure-based
aggregation with SQL, etc. This work focuses on the query
of the first phase since it may need to scan all logs and thus
is the bottleneck.

During the first phase, Alibaba Cloud engineers execute
queries on either the raw log blocks, if they have not been
compressed yet, or on compressed log blocks. Since a log
block will usually be compressed soon after it is generated,
full-text queries on compressed log blocks are much more
common.

2.1 Prior Work: Structurizing with Static Patterns

A naive way to query on compressed logs is to decompress
the logs first and then run standard tools like grep [14]. How-
ever, this approach incurs a long query latency. We first
present CLP [58], the state-of-the-art work to query directly
on compressed logs, since our work borrows several ideas
from CLP. We discuss other related works in Section 7.

By using both generic and user-specified rules, CLP first
identifies a number of templates (called “log types” in CLP
paper [58]), which correspond to the format string the appli-
cation uses to generate logs (e.g., “filename=%s" in a printf
statement). During the compression phase, CLP splits each
log entry into tokens using specific delimiters. By comparing
these tokens with templates, CLP can determine whether a
token is from the static part of a template or a variable in the
template. To encode each log entry, CLP replaces the static
part of its template with an identifier and stores its variable
tokens. Finally, CLP compresses all encoded log entries in a
log block into a log segment.

During the query phase, CLP can search a string in the
log. It first tokenizes the search string into several keywords
using the same delimiters. Then it starts from the first key-
word: for a log entry, it will search both the static part of its
template and the variables to see whether any can match the
keyword. Once it finds a match, it will continue to match
the following keywords from the matched position.

CLP adopts the idea of data partitioning and filtering to
optimize the query process. It builds an inverted index [11]
for the static part of each template to record which log seg-
ments contain the corresponding static part; based on both
generic and user-specified rules, it stores certain variables
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in a dictionary and builds an inverted index for distinct val-
ues of these variables as well. When matching keywords
on log segments, CLP will use the inverted index to decide
which log segments may contain a target keyword and filter
unrelated segments. Although this approach significantly
improves query speed on some datasets compared with the
naive approach, its query latency is still not satisfactory.

2.2 First Attempt: Fine-grained Partitioning and
Summaries based on Static Patterns

To avoid the time-consuming decompression process, we
adopt an idea in data processing systems [12, 21, 42, 43, 63]:
building summaries on each data partition to filter as many
partitions as possible when executing a query. This approach
creates two challenging and correlated questions: how to par-
tition data and how to create summaries? Ideally, data from
different partitions should have different characteristics and
their summaries should be able to capture such difference.
Besides, our method should not impair the overall compres-
sion ratio. For example, making partitions smaller is usually
good for the purpose of filtering, but may hurt compression
ratio [31, 45].

Motivated by the observation that values of the same vari-
able often share similar characteristics, we propose the fol-
lowing design. First, for a log block, we store values of the
same variable into a partition, instead of storing values from
different variables consecutively (i.e., CLP approach). We
call these data partitions as variable vectors and all variable
vectors of the same static pattern form a group. For example,
in Figure 1, the left log block is parsed into two groups and
four variable vectors. Second, we generate a summary to
capture the type and the maximal length of the values in
each variable vector. We compute the type number based
on whether values of a variable vector include a decimal
integer, a hexadecimal integer, an alphanumeric string, or
something else. Following this idea, we represent the type
number using six bits, each of which represents whether the
values include characters from the following groups: 0-9, a-f,
A-F, g-z, G-Z, and “other”.

Such combination is effective to create strict summaries in
our experiments: a variable vector has 3.1 types of characters
on average and its length variance is 66.1 on average; if we
generate the same summary on the whole log block instead
of on each variable vector, each log block has almost all
6 types (5.8 types) of characters on average and its length
variance is 198.5 on average. Furthermore, compressing each
variable vector individually improves the compression ratio
by 2.01x compared with CLP, because values of the same
variable vector have more similarity.

Our query procedure is similar to that of CLP (Section 2.1),
except that when searching a keyword in variable vectors,
we skip variable vectors whose summaries do not match
(part of) the keyword. Such optimizations bring a signifi-
cant improvement: compared with CLP, this attempt can

Junyu Wei et al.

reduce query latency by 5.72X. However, queries on larger
log dataset still take more than one minute, which are unac-
ceptable.

2.3 Opportunity: Runtime Patterns

To further partition logs into finer-grained partitions, we
propose the key idea of our work: structurizing and filtering
logs by exploiting both static and runtime patterns, which can
achieve fast and cheap cloud log storage. This idea is moti-
vated by our following observations about runtime pattern.

Runtime pattern exists widely in variable vectors. We
observe values in the same variable vector tend to have
runtime patterns. For example:

o Variables like block numbers may have a fixed prefix. For
example, block numbers in HDFS follow a fixed pattern:
“pblk_<*>".

Values of a numerical variable in the same log block may
all fall into a specific range. For example, time stamps
in January of 2021 follow a fixed pattern: “[2021-01-<*>
<*>:<*>:<*>,<*>]”,

Values of a variable vector like file paths and IP addresses
in the same log block may all come from a common root
path or the same sub-network. For example, file paths of
the same log block in Log A from Alibaba Cloud follow
a pattern: “/root/usr/admin/<*>" and IP addresses of the
same log block in Log G from Alibaba Cloud follow a

*_»

pattern: “11.187.<*>.<*>".

Intuitively, these runtime patterns can help filtering as
well, in ways similar to static patterns. We call each “<*>” in
a runtime pattern as a sub-variable. All values of the same
sub-variable in a variable vector form a sub-variable vector.
For example, in Figure 1, variable vector “1-2” is decomposed

as two sub-variable vectors “1-2-1” and “1-2-2”.

Values of the same sub-variable vector include limited
types of characters and have similar length. On our pro-
duction logs, a sub-variable vector has 1.5 types of characters
on average and its length variance is 32.5 on average. Com-
paring to 3.1 types of characters and length variance of 66.1
on whole variable vectors, this is a significant reduction. As
a result, we can build stricter summaries and filter keywords
more effectively.

3 System Overview

Based on our key idea, we design a system called LogGrep.
Figure 2 shows the detailed architecture of LogGrep. We
present the compression, query and reconstruction workflow
to give an overview of the system.

Compression. For each log block, LogGrep first samples a
subset (5% in our experiments) of its log entries, and identi-
fies static patterns on this sample using the Parser adopted
by LogReducer [69]. Then, with the help of those static pat-
terns, it parses all the log entries into variable vectors. For
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each variable vector, likewise, LogGrep first samples a subset
of its values, and extracts runtime patterns automatically on
this sample (§4.1) with the Extractor. Then the Assembler de-
composes the whole variable vector into several fine-grained
units called “Capsules” accordingly (§4.2) and generates a
Capsule stamp for each Capsule (§4.3). Finally, the Packer
compresses and packs all Capsules into a compressed file
called “CapsuleBox” using LZMA [77], which is reported to
have a high compression ratio [58, 69]. During the proce-
dure, the Packer pads all values of the same Capsule to the
same length, which can vastly improve query speed with
minimal impact on compression ratio. As shown in Figure 1,
a CapsuleBox includes all compressed Capsules belonging
to this log block, as well as their metadata including static
and runtime patterns.

Query. LogGrep provides a grep-like full-text query inter-
face on compressed logs. A query can contain multiple search
strings concatenated by classic logical operators. A search
string can contain wildcard characters, but LogGrep assumes
a wildcard character will not include token delimiters (like
space and comma) or line breaks — in other words, an en-
gineer can only perform a wildcard search within a single
token. To give a concrete example, a query in LogGrep may
look like “error AND dst:11.8* NOT state:503”.

LogGrep first parses a query command into several search
strings and tokenizes each search string as keywords. Each
keyword can be a part of static/runtime patterns or within a
Capsule. The Locator executes keyword matching process
with the help of runtime patterns to filter unrelated Capsules
(§5.1) and finally executes fixed-length matching within de-
compressed Capsules (§5.2). LogGrep also has a Query Cache
to store the results of past queries in a hashmap. The key
of the hashmap is a query command, and the value is the
corresponding location result.

Reconstruction. The previous step may return that the it
entry in a group matches a query, and LogGrep needs to
reconstruct the original log entry with a Reconstructor. To
achieve that, Reconstructor first decompresses all Capsules of
the corresponding group. For example, in Figure 1, if there is
a hit on Capsule “1-1-1”, Reconstructor needs to decompress
“1-2-1” and “1-2-2”. Reconstructor then fetches the it value of
each Capsule. Since the Packer pads values to the same length
in each Capsule, locating the i value is an O(1) operation.
Then, from the CapsuleBox metadata, Reconstructor finds
the corresponding static pattern of the group and the runtime
pattern of each Capsule. Finally, Reconstructor fills values
into the patterns to rebuild the original log entry/entries.
If the previous step returns multiple entries, Reconstruc-
tor needs to order them after reconstructing them. Entries
from the same group are naturally ordered since LogGrep
stores values in the same variable vector according to their
original order appearing in the log block. For entries from
different groups, Reconstructor merges them based on their
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Figure 2. LogGrep architecture.

timestamps to restore the global order. If there is no times-
tamp in logs, LogGrep needs to add logical timestamps to
log entries before compressing them, but so far, we have not
implemented this mechanism since all logs in Alibaba Cloud
have timestamps.

4 Log Structurization with Runtime
Patterns

After structurizing logs into variable vectors based on their
static patterns, we achieve further improvement by exploit-
ing runtime patterns. Log structurization with runtime pat-
terns has three steps: 1) Extract runtime pattern(s) within
each variable vector; 2) Decompose each variable vector into
fine-grained Capsules; 3) Generate a stamp for each Capsule,
which can help to filter irrelevant Capsules during query
execution. We discuss these three steps in this section.

4.1 Runtime Pattern Extraction

Pattern extraction is a well-studied field, but when testing
with general-purpose pattern extraction methods [4, 50, 53,
75], we find they are slow given the scale of production logs.

To address this problem, our design is motivated by our
observation that most of the variable vectors are dominated
by one pattern. If we know that a vector only has one pattern,
then it is possible to design a more efficient algorithm. In
the rest of this section, we first present the heuristic rule
we use to determine whether a vector is dominated by one
pattern. Then we present the pattern extraction algorithms
for different categories of vectors respectively.

Variable vector categorization. We first try to extract pat-
terns with a general-purpose pattern extraction method [53]
on samples of 13,238 variable vectors from 37 types of logs
(21 from Alibaba Cloud, 16 from public logs). We find these
variable vectors can be generally divided into two categories.
Values of the first category, such as block number, time stamp,
and request number, do not repeat but tend to have one com-
mon pattern. Values of the second category, such as file
path, user name, and error code, may repeat many times
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but their unique values may have multiple patterns. This
result motivates us to use the duplication rate of values,
i.e., (total_count—unique_count)/total_count, as a heuristic
metric to determine whether a variable vector is dominated
by one pattern.

We call a variable vector a “single-pattern vector” if one
pattern can cover at least 90% of its values. And if not, the
variable vector is called a “multi-pattern vector”. Figure 3
presents the correlation between the likelihood a variable
vector is a single-pattern vector and its duplication rate.
As shown in the figure: 1) most of the vectors with a low
duplication rate are single-pattern vectors, 2) vectors with a
high duplication rate can be single-pattern vectors or multi-
pattern vectors. Based on this observation, we propose our
heuristic rule: we apply a single-pattern extraction method
for low-duplication-rate vectors and apply a multi-pattern
extraction method for high-duplication-rate vectors. Note
this heuristic rule may apply an expensive multi-pattern
extraction method for single-pattern vectors with a high
duplication rate. However, this is not too bad: considering
pattern extraction only needs to be applied on unique values,
the high duplication rate means there are fewer values to
analyze, which reduces the overhead.

We need to choose a threshold to separate low and high
duplicate rates. Considering the bathtub-like distribution in
Figure 3, the efficiency of our approach is not very sensitive
to this threshold, as long as it is somewhere in the middle.
In this paper, we choose 0.5 as the threshold. We use real
variable vectors to denote those with duplication rate under
0.5 and nominal variable vectors to denote those with dupli-
cation rate greater than or equal to 0.5. We design different
methods to extract runtime patterns for these two types of
variable vectors, which are discussed next.

Note that the accuracy of pattern extraction does not affect
the correctness of our system: if a value does not match any
found patterns, our system will store it in an outlier partition;
any query will need to scan the outlier partition. Therefore,
if our heuristic rule fails, it will only affect the performance
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of compression and query, but will not cause data loss or
wrong query results.

Tree expanding approach for real variable vectors. Un-
der the assumption that a real variable vector is dominated
by one pattern, we design a tree expanding approach [35]
to extract its runtime pattern by building and fully expand-
ing a pattern tree (i.e., expanding all leaf nodes in the tree
recursively).

In the beginning, LogGrep constructs a sample set by
choosing 5% values and puts all unique values in them in a
root node (e.g, vector #1 in Figure 4). Then LogGrep tries to
expand the tree with multiple iterations. During an iteration,
for each leaf node, if it is not marked as unsplitable, LogGrep
chooses a delimiter, by either using a non-alphanumeric char-
acter from a randomly picked value, such as “_” in vector #1
in Figure 4, or the longest common sub-string (LCS) between
two randomly picked values, such as “F8” in vector #3 in Fig-
ure 4. Then LogGrep tests if this delimiter can split the leaf
node, namely at least 95% values containing the delimiters.
LogGrep tries each delimiter for three times by extracting
the delimiter from different randomly picked values, and
if all fail, LogGrep marks the corresponding leaf node as
unsplitable. If all leaf nodes are unsplitable, the expanding
process terminates.

We choose non-alphanumeric character as delimiter since
we find non-alphanumeric characters tend to split a value
into parts with different semantic information. We choose
LCS since values in variable vectors of the same log block
tend to share a common sub-string.

At the end of tree expanding, if all values in a leaf node
are the same, LogGrep represents the leaf node as a con-
stant sequence (e.g., node #2 “block” and #5 “F8” in Figure 4).
Otherwise, the leaf node constitutes a sub-variable. Finally,
LogGrep concatenates all these constant sequences and sub-
variables to build the runtime pattern of the corresponding
variable vector.

The complexity of this algorithm is O(n), where n is the
number of values in the root node, because each iteration
needs to scan all values in the root node and the number
of iterations is determined by the number of sub-variables
in the runtime pattern, which have no correlation with the
number of values in the root node and can be regarded as
constant.

Pattern merging approach for nominal variable vec-
tors. According to our observation, nominal variable vec-
tors have fewer unique values, but these values may have
multiple patterns. As a result, we design a pattern merging
approach [31, 47] for nominal variable vectors.

LogGrep first builds a temporary vector (vector #2 in Fig-
ure 5) by only retaining unique values in the original variable
vector. Then LogGrep splits each value in the vector into
several sub-variables by using non-alphanumeric characters
as delimiters to generate a “pattern sketch” vector (vector #3
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Figure 4. Runtime pattern extraction for real variable vec-

tors. The original variable vector is stored into 3 Capsules: CO0,

C1 and C2. Extracted runtime pattern and Capsule stamps

are shown at the bottom.
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Figure 5. Runtime pattern extraction for nominal variable
vectors. The original variable vector is stored into 2 Capsules:
C3 and C4. Extracted patterns and Capsule stamps are shown
at the bottom.

in Figure 5). Then LogGrep merges those pattern sketches
with the same form. If a sub-variable has a constant value in
all values of the same pattern sketch, LogGrep will represent
the sub-variable as a constant in the final pattern. For exam-
ple, “<sv1>"in “<sv1>#<sv2>" of vector #4 in Figure 5 is a
constant “ERR”. Finally, LogGrep reorders the temporary vec-
tor by storing all values with the same pattern sequentially
to generate the dictionary vector. It assigns a unique index
number to each value in the dictionary vector and generates
an index vector by replacing original variable values with
the corresponding index numbers.

The complexity of this algorithm is O(nlogn), where n
is the number of values in the dictionary vector: LogGrep
generates a pattern sketch for each value, and in order to
store all values of the same sketch sequentially, LogGrep
sorts all these sketches.

4.2 Variable Vector Encapsulation

Based on the extracted runtime patterns, LogGrep can further
decompose variable vectors into Capsules. Each Capsule will
be compressed independently and compactly.
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For real variable vectors, LogGrep stores all sub-variables
of the same place in a runtime pattern as a sub-variable
vector and compresses it as a Capsule (e.g., Capsules “C1” and
“C2” in Figure 4). If some values do not match this runtime
pattern, LogGrep puts them in an outlier vector and stores it
as another Capsule (e.g., Capsule “C0” in Figure 4).

For nominal variable vectors, LogGrep does not further
split the dictionary vector into smaller sub-variable vectors,
like it does for real variable vectors, because the dictionary
vector is usually small enough. In this case, the additional
metadata overhead of further splitting may overcome the
benefit of splitting. Therefore, LogGrep encapsulates each
nominal variable vector into two Capsules, one for the dic-
tionary vector and the other for the index vector (Capsule
“C3” and “C4” in Figure 5).

4.3 Stamping Capsules

LogGrep generates a Capsule stamp for each Capsule, which
includes a type number and the maximal length of the values
in the Capsule. During log query, LogGrep will use runtime
patterns and stamps to determine whether a keyword may
match a value in the Capsule. If not, LogGrep avoids decom-
pressing and scanning the corresponding Capsule.

For a Capsule, LogGrep computes its type in the same
way as described in Section 2.2 (i.e., six bits to categorize
decimal, hexadecimal, alphanumeric, or other data). The only
exception is the index vector in a nominal variable vector:
since an index vector only contains 0-9, LogGrep does not
compute and store its type number.

LogGrep computes the maximal length in different man-
ners for different types of Capsules. For a sub-variable vector
and an index vector, LogGrep computes the maximal length
of its values. For a dictionary vector of a nominal variable
vector, LogGrep computes the maximal length of values be-
longing to each pattern.

Furthermore, for a dictionary vector, LogGrep calculates
the count of values belonging to each runtime pattern, which
is used to accelerate queries (§5.2).

Example of real variables vectors. For sub-variable vec-
tor “C1” in Figure 4, since it only contains 0-9, its type number
is 000001b=1; for sub-variable vector “C2”, since it contains
0-9 and A-F, its type number is 000101b=5. Then LogGrep
attaches the type number and the maximal length of each
sub-variable vector to the runtime pattern. Now the pattern
becomes “block_<type=1,len=1>F8<type=5,len=4>".

*_»

Example of nominal variable vectors. For “ERR#<*>" in
Figure 5, LogGrep finds the type number of the sub-variable
“<*>”is 000001b=1, since it only contains digits. Further, Log-
Grep finds runtime pattern “ERR#<type=1>" has two values
and the maximal length is seven. Therefore, the patterns
become “ERR#<type=1> (cnt=2, len=7); SUCC (cnt=1, len=4);
IdxLen=1".
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Stamp <typ=l,len=1> <typ=5,len=4>

Pattern block_<svl <sv2>
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Match with “8F8F” % 8FSE8F
@

8F8F
® 8F8F

Figure 6. Possible matches for a keyword on a runtime pat-
tern.

5 Keyword Matching with Runtime
Patterns

When executing a query command, LogGrep splits the query
command into several search strings using the logical opera-
tors. Each search string will be further tokenized as several
keywords. LogGrep matches these keywords on static pat-
terns like CLP (§2.1). We redesign the keyword matching
process within a variable vector, since we further store vari-
able vectors as fine-grained Capsules.

The keyword matching process within a variable vector in-
cludes two steps: 1) deciding which Capsules to decompress,
and 2) matching given keyword(s) within decompressed Cap-
sules. During the first step, LogGrep locates and filters Cap-
sules based on the runtime patterns and Capsule stamps.
During the second step, LogGrep matches the keyword(s)
within a decompressed Capsule with fixed-length matching
to further reduce the query latency.

5.1 Capsule Locating and Filtering

In order to decompress as few Capsules as possible for log
queries, LogGrep first queries on the runtime pattern to lo-
cate all possible Capsules that may contain the keyword
and filters these Capsules based on the Capsule stamps. The
processes are similar on real variable vectors and nominal
variable vectors. We first illustrate the process on real vari-
able vectors in detail and then discuss the differences on
nominal variable vectors.
Locating Capsules with runtime patterns. LogGrep can
locate all relevant Capsules by matching the keyword on
runtime patterns. Given a keyword and a runtime pattern,
depending on the position of the keyword in an original vari-
able value, LogGrep may need to check whether the keyword
is a prefix, a suffix, or a sub-string of any of the values fol-
lowing this runtime pattern. We only present our algorithm
for sub-string matching, since it is the most general case.
The algorithm of the matching process is as follows: 1)
LogGrep will try to match the keyword to each sub-variable
vector in the runtime pattern since the keyword may be fully
contained in one sub-variable vector (such as the matching
case @ and ® in Figure 6). 2) LogGrep will try to match
the keyword to each constant string in the runtime pattern
since the keyword may be fully contained in the runtime
pattern: if the keyword is a sub-string of the constant, then
all values of this variable vector will contain the keyword
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and thus they all match the keyword. Otherwise, we have
the following three cases:

e Head case: The suffix of the constant is a prefix of the key-
word (such as the matching case @ in Figure 6). LogGrep
will execute the prefix matching process recursively to
check whether the remaining suffix of the keyword is a
prefix of any of the values following the remaining part
of the runtime pattern.

o Tail case: The prefix of the constant is a suffix of the key-
word (such as the matching case @ in Figure 6). LogGrep
will execute the suffix matching process recursively to
check whether the remaining prefix of the keyword is a
suffix of any of the values following the remaining part of
the runtime pattern.

e Body case: The constant string is a sub-string of the key-
word (such as the matching case @ in Figure 6). LogGrep
will recursively execute a prefix matching process and a
suffix matching process. Finally, it will calculate the inter-
section of these two matching results.

In a possible match, if we require a certain sub-variable
vector to have a certain value to match a sub-string of the
keyword, LogGrep will search the corresponding Capsule
to check if there is an actual match (such as match “F8F” in
sub-variable vector “<sv2>" in matching case @ in Figure 6).
The matching process on a Capsule may return a set of
hit entries represented by their row numbers. When one
keyword matching requires searching multiple Capsules,
LogGrep takes two steps to produce the final result. First,
one possible match may require multiple Capsules to have
certain values and thus the final result of this possible match
is the intersection of the matching result in each Capsule.
Second, matching a keyword on a runtime pattern may lead
to multiple possible matches, and the result of the matching
should be the union of the results of all the possible matches.

Filtering Capsules with Capsule stamps. During the mat-
ching process of a keyword on a runtime pattern, we locate
all candidate Capsules which are required to have a certain
value. Before decompression, LogGrep will first check the
stamp of each candidate Capsule and only decompress it if
the sub-string of the keyword does not violate the restric-
tions recorded in the stamp.

The type number recorded in a Capsule stamp helps to
check if all character types in the sub-string of the keyword
can be found in the Capsule. Assume the type number of the
Capsule is C, LogGrep calculates the six-bit type number K
of the sub-string of the keyword and checks if “K&C = K.
If the check fails, LogGrep will not decompress the Capsule.
Otherwise, LogGrep will check whether the length of the
sub-string of the keyword exceeds the max-length in the
stamp.

For example, the matching case @ in Figure 6 requires
“<sv1>" to have “8F8”, which violates the max-length of
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“<sv1>" (len=1), therefore Capsule “C1” will not be decom-
pressed for this matching. The matching case ® requires
“<sv2>" to have “8F8F”, which passes all checks (type num-
ber check and max-length check), and thus Capsule “C2” will
be decompressed.

Differences for nominal variable vectors. LogGrep first
tries to match a keyword on each runtime pattern of the dic-
tionary vector in the same way as it matches a keyword in a
real variable vector. Once LogGrep finds the keyword may
match a pattern and this keyword passes the stamp check-
ing, it decompresses the dictionary Capsule to see whether it
can find an actual match. LogGrep can jump to the matched
runtime pattern directly with the help of count and length in
Capsule stamps (§5.2). If an actual match is found, LogGrep
can know the index number corresponding to the keyword
and will search this index number in the index vector. Oth-
erwise, LogGrep can avoid decompressing and scanning the
Capsule holding the index vector.

For example, if LogGrep needs to search the keyword
“ERR#404” in Figure 5, it first finds this keyword matches
the pattern “ERR#<type=1>" and then finds an actual match
with index number 0 in the dictionary vector. Finally, it will
search 0 in the index vector.

5.2 Fixed-length Matching

Once a Capsule is decompressed, LogGrep will match a sub-
string of keyword on all of its values using fixed-length
matching. During the encapsulation process §4.2, LogGrep
pads values of the same Capsule for the sub-variable vector
and index vector, and pads values of the same pattern for
dictionary vector to the max-length and as mentioned above,
it records this max-length in the stamp. During the query
process, LogGrep will execute fixed-length matching based
on the max-length information recorded in stamps.

This fixed-length matching brings three benefits. First,
when matching in a Capsule, we can use the fast Boyer-
Moore algorithm (BM algorithm) [5] to replace the traditional
Knuth-Morris-Pratt algorithm [57] (KMP algorithm). The
reason is that, if values can have a variant length, we have to
add some delimiters to separate values. In this case, since the
BM algorithm may skip characters, when it finds a matching
string, it does not know the row number of the matching
string, since it does not know how many delimiters have
been skipped. If each value has a fixed length, LogGrep can
compute the row number by dividing the matching position
by the value length.

Second, as discussed in §5.1, if matching a keyword needs
to scan multiple Capsules, LogGrep scans the first Capsule
first, and if the matching returns some rows, LogGrep will
check these rows in the second Capsule directly, instead of
scanning all rows in the second Capsule. Padding all values
to the same size makes such direct checking possible.

Finally, when LogGrep matches in the dictionary vector, it
first needs to match the keyword to the patterns as discussed
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in §5.1. If a possible match is found, LogGrep can calculate
the starting position of values of the corresponding pattern,
by utilizing the count and length of all prior patterns (i.e.,
>;(count; X length;)), and jump to the starting position di-
rectly. Again, such direct locating is impossible if the value
length is not fixed.

Our evaluation (§6.3) shows that padding can even im-
prove compression ratio to a small degree, due to two reasons.
First, after structurization with runtime patterns, according
to our observation in §2.3, values of the same sub-variable
or pattern tend to have a similar length, so padding does
not bring much space overhead. Second, without padding,
we still need to add delimiters to separate different values.
Therefore, the cost of padding may be smaller than adding a
delimiter.

6 Evaluation

We implement LogGrep with 12,679 lines of C++ code. Our
evaluation tries to answer three questions:

e What is the performance of LogGrep in terms of query
latency, compression ratio, compression speed, and overall
cost on Alibaba Cloud production logs? (§6.1)

o How does LogGrep perform on logs beyond Alibaba Cloud
logs? (§6.2)

e What is the effect of each individual technique incorpo-
rated by LogGrep? (§6.3)

To answer these three questions, we measure the perfor-
mance of LogGrep on 21 types of production logs (samples of
them can be found in [64]) from Alibaba Cloud and 16 types
of public logs [28]. Due to privacy limitations, we cannot get
the exact query commands used by the Alibaba Cloud engi-
neers. Instead, we synthesize a query command for a typical
error type on each type of production log under the guide of
our collaborator from Alibaba Cloud. As for public logs, if a
log is from an application that can also be found in Alibaba
Cloud, we consult Alibaba Cloud developers to synthesize
query commands. Otherwise, we use query commands from
a previous work [58]. The detailed query commands can be
found in the appendix.

LogGrep can work in two modes: in refining mode, users
build the query command gradually in a session; in direct
mode, users directly launch a complete query command. In
the rest of this section, evaluation is conducted in the direct
mode unless explicitly stated otherwise.

We compute the overall cost of the whole system using
the following equation:

Size

Ciotal = Cst X Durationg; X
o storage S1OT49€ ™ CompressionRatio

Size

+Ccpy X
cPu CompressionSpeed

+Ccpy X QueryLatency X QueryFrequency

(1)
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Based on the data from Alibaba Cloud, we set Cssorage to
be 0.017$ per month, Durationssorage to be 6 months [58, 69],
and Ccpy to be 0.016$ per hour given the type of the CPU
we use. The query frequency highly varies: we use a default
frequency of 100 in our computation and we discuss how
changing the frequency may change the conclusion. Note
that Ctorage already includes the cost of erasure coding to
protect logs.

For comparison, we measure the performance of four other
systems:

o gzip+grep (ggrep): This is the default choice for near-line
logs in Alibaba Cloud. It uses gzip to compress logs. When
querying the logs, it decompresses the logs first and then
uses grep to search on the decompressed logs. grep sup-
ports logical operators with "-E" and "-v" options [14]. It
executes the query commands with these operators and
UNIX pipe.

e ElasticSearch (ES) [6]: ElasticSearch is a classical query
engine for logs and is the default choice for on-line logs in
Alibaba Cloud. We use ElasticSearch 7.8.0 with the default
settings, and use python SDE to insert logs to the index
using “bulk” [27] method to accelerate the insertion pro-
cess. ES supports logical operators and can execute query
commands with the help of these operators.
CLP [71]: CLP is a state-of-the-art method to search di-
rectly on compressed logs. We use the source code of CLP
with the default settings. CLP cannot support logical oper-
ators. After discussing with CLP authors, to execute our
query command, we use CLP to execute the obscurest
query, and then use grep to query with additional condi-
tions with the help of UNIX pipe. By default, CLP uses
zstd [17] as the second-stage compression tool. Comprared
with LZMA used in LogGrep, this may offer a lower com-
pression ratio but a higher compression and decompres-
sion speed.

LogGrep-SP: For comparison, we also evaluate the perfor-

mance of LogGrep which only exploits static patterns (i.e.,

our first attempt in §2.2).

Testbed. We perform all experiments on the Linux server
with 2X Intel Xeon E5-2682 2.50GHz CPUs (with 16 cores),
188GB RAM, and Red Hat 4.8.5 with Linux kernel 3.10.0.
Since both compression and query execution can easily be
parallelized, we normalize compression time and query la-
tency to be using one CPU.

6.1 Performance on Production Logs

We evaluate the query latency, compression ratio and com-
pression speed on 21 types of production logs (1.73TB in
total) from Alibaba Cloud. These logs are from different
cloud apps and have various characteristics. We anonymize
log names due to privacy reasons. The total line number of
Log T exceeds the max limitation (2,147,483,647) of a single
index in ES. As a result, we do not have ES results on Log T.
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Query latency. As shown in Figure 7(a), the query latency
of LogGrep is 6.47X to 108.91x (30.60% on average) lower
than ggrep and 8.67x to 77.33X (35.74X on average) lower
than CLP. The comparison with ES varies significantly: on 7
types of logs, the query latency of LogGrep is lower, by up
to 15.75x%; on 13 types of logs, the query latency of LogGrep
is higher, by up to 15.71x. This is because, on the one hand,
ES is highly optimized for query latency and thus performs
better on more types of logs; on the other hand, LogGrep
performs better if a query directly hits the template or the
keyword is a sub-string of constant part in the pattern, such
that few Capsules need to be decompressed (e.g., Log S, Log
M). On average, the query latency of LogGrep is about half
of that of ES. The query latency of LogGrep is lower than
LogGrep-SP on 20 logs by up to 25.33% (10.07X on average).
The only exception is Log U, where the variable vectors
that are related to the query have few runtime patterns: in
this case, exploiting runtime patterns cannot reduce query
latency.

The query latency of LogGrep is longer than one minute
only on Log T, since this log is as large as 964GB. Comparably,
ggrep takes longer than one minute to execute a query on 11
logs; CLP takes longer than one minute on 12 logs; LogGrep-
SP takes longer than one minute on 7 logs. ES finishes the
queries within one minute on all logs it has been tested.

Compression ratio. As shown in Figure 7(b), LogGrep has
the highest compression ratio among ggrep, ES and CLP
on all types of production logs. To be concrete, its compres-
sion ratio is 1.77X to 4.50% (2.57X on average) higher than
gzip, 1.38X to 3.60 X (2.14X on average) higher than CLP, and
9.53x% to 82.51% (23.14X on average) higher than ES. ES needs
to build a large index to support low-latency queries, and
as a result, its compression ratio is sometimes even smaller
than one. The compression ratio of LogGrep-SP and LogGrep
are comparable. After exploiting runtime patterns, the com-
pression ratio increases on 15 types of logs by up to 1.33%
and decreases on the other 6 types of logs by up to 1.13x.
This is because, on the one hand, after exploiting runtime
patterns, values in a data partition have more similarities; on
the other hand, exploiting runtime patterns will introduce
more metadata, which incurs more storage overhead.

Compression speed. As shown in Figure 7(c), the com-
pression speed of LogGrep is lower than gzip and CLP and
higher than ES. Specifically, the compression speed of Log-
Grep is 0.06X to 0.12X (0.10X on average) as much as that
of gzip, 0.08x to 0.26x (0.16X on average) as much as that
of CLP, and 4.51X to 14.38% (8.32X on average) higher than
that of ES. Here we include the index building time of ES
into its compression time. After exploiting runtime patterns,
the compression speed of LogGrep is 0.61X to 0.99X on 19
types of logs (0.86Xx on average) as much as that of LogGrep-
SP. The compression speed of LogGrep is slightly higher
than LogGrep-SP by up to 1.05X on two types of logs since
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Figure 7. Query latency, compression ratio and compression speed on 21 Alibaba Cloud logs.
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Figure 8. Overall cost.

LogGrep-SP takes more time to compress coarse storage
units.

Such a slow-down is expected since fine-grained struc-
turization certainly needs extra CPU cycles. However, since
LogGrep has a lower query latency and high compression
ratio, LogGrep can still achieve a lower overall cost.

Overall cost. We calculate the overall cost based on Equa-
tion 1. As shown in Figure 8(a), we find LogGrep has the
lowest overall cost. Its cost is 34% as much as that of ggrep,
36% as much as that of CLP, and 7% as much as that of ES. By
exploiting runtime patterns, the cost of LogGrep is 73% as
much as that of LogGrep-SP. As for costs for individual logs,
LogGrep has a lower overall cost compared with ggrep, CLP
and ES on all tested logs. Its cost is a little bit higher than
LogGrep-SP on Log D, Log J and Log U by up to 8%, since ex-
tracting runtime patterns has a higher compression cost but
sometimes does not improve query latency and compression
ratio significantly.
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If we look at the detailed breakdown, compared with ggrep
and CLP, LogGrep pays more cost for compressing logs to re-
duce storage and query costs; compared with ES, all types of
costs of LogGrep are lower. As a result, we conclude that, for
near-line cloud logs, trading compression speed for compres-
sion ratio and query latency is worthwhile. Besides, although
LogGrep pays more cost for compressing logs and more stor-
age cost to store metadata on some logs by exploiting runtime
patterns, its overall cost is lower than LogGrep-SP.

If we consider higher querying frequency, LogGrep’s ben-
efit over ggrep and CLP will grow since LogGrep’s query
latency is significantly lower than these two. For the 13 types
of logs on which LogGrep’s query latency is higher than ES,
our computation shows, if the query frequency is over 7,447
to 542,194 times (130,169 times on average), ES will have a
lower overall cost: such frequency is much higher than the
common use cases for near-line cloud logs.

6.2 Performance on Public Logs

We also evaluate query latency, compression ratio and com-
pression speed on 16 public logs benchmark [28, 32] (77GB in
total), which are from various scope of applications including
HPC, personal digital devices of different platforms (Linux,
Windows, and Mac) and Web servers. Since CLP does not
support all logical operations, it fails to work on “Openstack”,
and thus we do not list this result.

Query latency. The query latency of LogGrep is 2.27X to
51.25X (14.56X on average) lower than that of ggrep, and
1.94% to 42.00% (13.74% on average) lower than that of CLP.
Again, the comparison with ES varies significantly: on 11
types of logs, the query latency of LogGrep is lower, by up
to 12X; on 5 types of logs, the query latency of LogGrep is
higher, by up to 12.23%. On average, the query latency of
LogGrep is about 33% of that of ES. The query latency of
LogGrep is lower than LogGrep-SP on public logs by up to
25.00 X (7.02 X on average).

Compression ratio. LogGrep has the highest compression
ratio among ggrep, ES and CLP on all types of public logs.
LogGrep’s compression ratio is 1.34X to 26.55X (3.99X on
average) higher than that of gzip, 1.03 to 3.12X (2.10x on
average) higher than that of CLP and 10.23X to 182.65X
(41.44X on average) higher than that of ES. After exploiting
runtime patterns, the compression ratio of LogGrep increases
on 12 types of logs by up to 1.33%, and decreases on other 4
types of logs by up to 1.20x.

Compression speed. LogGrep’s compression speed is slower
than gzip (0.07X to 0.28x%, 0.14x on average) and CLP (0.08x
to 0.99%, 0.35X on average), but is still higher than ES (5.84%
to 16.12X, 11.15X on average). After exploiting runtime pat-
terns, the compression speed of LogGrep is 0.61X to 0.99%
(0.86x on average) as much as that of LogGrep-SP on 14
types of logs and is slightly higher than that of LogGrep-SP
on two types of logs by up to 1.07X.
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Figure 9. Effects of individual techniques on Alibaba Cloud
logs (normalized to full-versioned LogGrep).

Overall cost. As shown in Figure 8(b), LogGrep’s overall
cost is 34% as much as that of ggrep, 41% as much as that of
CLP, 5% as much as that of ES, and 74% as much as that of
LogGrep-SP. The detailed breakdown shows a trend similar
to that on Alibaba Cloud logs. In order for ES to have a
lower overall cost, the system needs to query at least 17,718
to 125,466 times (73,019 on average), which is not likely to
happen on near-line logs.

6.3 Effects of Individual Techniques

This section measures the impact of individual techniques
proposed by this paper. We implement five versions of Log-
Grep, each removing an individual technique: “w/o real” re-
moves runtime pattern extraction and fine-grained structur-
ization in real variable vectors (§4.1); “w/o nomi” does similar
for nominal variable vectors (§4.1); “w/o stamp” removes the
stamp of each Capsule and thus does not filter Capsules with
their stamps during keyword matching (§4.3); “w/o fixed”
removes the padding process and queries on variant-length
“Capsules” with the KMP algorithm (§5.2); “w/o cache” re-
moves the Query Cache and re-executes prior queries. Since
Query Cache is especially useful for the refining mode, we
compare the full-version with “w/o cache” version in the
refining mode. We conduct other performance comparisons
in the direct mode.

Figure 9 shows the average query latency of each version
after normalized to the full-version. Specifically, runtime pat-
tern extraction and structurization for real variable vectors
and nominal variable vectors can achieve 1.51x and 4.03x
reduction to query latency respectively; Capsule stamp can
achieve 3.59x reduction to query latency; fixed-length match-
ing can achieve 1.89X reduction to query latency; Query
Cache can achieve 2.08x reduction to query latency.

Runtime pattern extraction and encapsulation in nomi-
nal variable vectors bring the most significant reduction to
query latency, because nominal variable vectors take a larger
space compared with real variable vectors. Capsule stamp
can bring up to 15X reduction to the query latency (on Log
B), due to its stamp is strict, such that LogGrep can filter
out more Capsules with the help of it. Fixed-length padding
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and matching can bring improvement to 20 logs. On some
logs (e.g., Log G, Log O, Log R), it can even bring up to 4%
reduction to query latency. The only exception is Log N, on
which this technique causes a slightly higher (5%) latency
since the length of its values within a Capsule varies a lot.

We also evaluate the effect of fixed-length padding on com-
pression ratio. We find the compression ratio with padding
is 0.99% to 1.10X (1.04X on average) as much as that with
no padding. Padding only reduces the compression ratio on
one type of log (Log F) by 1%. This means on most logs, the
overhead of padding is smaller than the overhead to add a
delimiter to separate different values.

7 Related Work

Previous log management tools mainly target either high
compression ratio or low query latency. Some newly pro-
posed methods are trying to achieve both by adopting the
idea of filtering and only decompressing relevant logs. Log-
Grep follows this idea, and proposes to exploit both static and
runtime patterns to partition data so that the content in each
partition shares common features. To achieve this, LogGrep
extracts runtime patterns automatically and structurizes log
data in fine-grained units, which can reduce query latency
significantly while still maintaining a low storage cost.

Log compression and query. The methods of compress-
ing large logs can be categorized into two groups: bucket-
based methods [20, 29, 44] and parser-based methods [45, 69].
Bucket-based methods first group logs into different buck-
ets according to their similarity and compress each bucket
individually. Parser-based methods parse log into templates
and variables and then compress variables from the same
template individually. These methods usually have a high
compression ratio, but to execute a query, one needs to
decompress data first. LogGrep inherits the parser from
parser-based methods and further accelerates queries on
compressed logs.

Both general-purpose text query tools, such as Elastic-
Search [6] and Splunk [33], and log-specific query tools, such
as Scalyr [34] and Loki [39], can achieve low query latency
on cloud logs. However, since they do not take compression
into consideration, compared with LogGrep, their overall
cost are unsatisfactory for cloud logs.

Query on compressed data. These works can be catego-
rized into two types: First, some approaches [37] can query
on encoded data directly without any decompression [3, 22,
26, 38, 55, 56, 59, 61, 73, 78] However, since these methods
need to keep the interpretability of encoded data, they can-
not compress data with higher compression ratio methods
(e.g., LZMA). As a result, their overall storage cost is unsatis-
factory [58].

Second, the idea of partitioning data into independent
units and filtering irrelevant units has been proposed by
database community [1, 2, 12, 40] and been applied by CLP,
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the state-of-the-art log compression and query tool. However,
according to our experiments (§6.1), this filtering granularity
is still too coarse and as a result, both the query latency and
the overall cost of CLP are unsatisfactory.

Log pattern extraction. General pattern extraction meth-
ods on text data are well-studied [4, 24, 50, 53, 68, 75], but
their time complexity are relatively high and thus they are
slow on large-scale log data [76]. Previous log pattern ex-
traction on logs mainly focus on extracting static patterns
automatically by source/binary code analysis [7, 9, 70, 74] or
applying heuristic methods [30, 36, 47, 49, 51, 62, 66, 67]. We
propose a novel method to extract runtime patterns automat-
ically to partition data in fine-grained units with common
features.

8 Conclusion and Future Work

This work proposes a novel log compression and query tool
called LogGrep, which exploits both static and runtime pat-
terns to structurizes logs in fine-grained Capsules. Our eval-
uation shows this design enables effective summaries and
can accelerate queries and reduce overall cost significantly.

Our profiling shows that there is still room to improve
the compression speed of LogGrep, which is important to
ingest raw logs at a high speed. In the future, we will con-
tinue optimizing our implementation and scale LogGrep to
a distributed cluster.
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A Artifact Appendix
A.1 Abstract

The artifact of this paper includes the source code of Log-
Grep and also the queries we use to query open logs. The
reproduce procedure is mainly done on open logs, but we
also open samples of our production logs after removing
some sensitive messages.

A.2 Description & Requirements

A.2.1 How to access.

Our Source code is at:
https://github.com/THUBear-wjy/LogGrep/tree/master

A.2.2 Hardware dependencies.

e CPU: 2x Intel Xeon E5-2682 2.50GHz CPUs (with 16
cores)
e RAM: 188GB

A.2.3 Software dependencies.

e OS: Red Hat 4.8.5 with Linux kernel 3.10.0
o Compiler: gec version 4.8.5 20150623

A.2.4 Benchmarks.

o The open dataset can be found at:
https://zenodo.org/record/7056802#.Yxm2VexBwq2
Open dataset inlcudes 16 types of logs with 76GB in
total.

o The queries we tested on production logs and public
logs can be found in Table 1

e We also open samples of our production logs at:
https://github.com/THUBear-wjy/openSample.

A.3 Set-up

The compilation and quick test procedure can be found at
the README.md file in our code repository.

A.4 Evaluation workflow
A.4.1 Major Claims.

e (C1): LogGrep achieves an order of magnitude query
latency saving compared with gzip+grep when exe-
cuting our listed queries and its overall cost is 34%
as much as that of gzip+grep. This is proven by the
experiment (E1) described in §6 whose results are il-
lustrated/reported in §6.2.

e (C2): LogGrep achieves comparable latency compared
with ES when executing our listed queries in code
repository and its overall cost is 5% as much as that of
ES. This is proven by the experiment (E2) described in
§6 whose results are illustrated/reported in §6.2.

o (C3): LogGrep achieves an order of magnitude query
latency saving compared with CLP and its overall cost
is 41% as much as that of CLP. This is proven by the
experiment (E3) described in §6 whose results are il-
lustrated/reported in §6.2.

Junyu Wei et al.

A.4.2 Experiments.

Experiment (E1): [Compare with gzip+grep]: To compare
LogGrep with gzip+grep system.

[Preparation] Use linux "grep" to query logs and use linux
gzip of version 1.5 to compress logs.

[Execution] Execute LogGrep in the way we described in our
code repository. Execute "gzip" to compress logs and record
the compression time and compressed size. Before query,
first unzip compressed logs and record the decompression
time and use "grep" to query on logs and record the query
time. Final result

[Results] The query latency of LogGrep is 2.27x to 51.25x
(14.56x on average) lower than that of gzip+grep. Overall
cost is 34% as much as that of gzip+grep on average.

Experiment (E2): [Compared with ES]: To compare LogGrep
with Elasticsearch system.

[Preparation] Install and configure ElasticSearch of version
7.8.0 at
https://www.elastic.co/downloads/past-releases/elasticsearch-
7-8-0

[Execution] Execute LogGrep in the way we described in
our code repository. Test ES with python API, use "bulk”
insertion to insert logs into ES index, use "curl -X GET local-
host:9200/_cat/indices?v" to see the storage consumption of
index. Use python API to query with ES index and record
the query latency

[Results] The query latency of LogGrep is comparable com-
pared with ES (On Android, Hdfs, Hadoop, Thunderbird,
Winodws, LogGrep has a higher latency by up to 12.23x. On
other types of logs, LogGrep has a lower latency by up to
12x.) Overall cost is 5% as much as that of ES on average.

Experiment (E3): [Compare with CLP]: To compare LogGrep
with CLP.

[Preparation] Install and configure CLP with instructions
listed in https://github.com/y-scope/clp-core

[Execution] Execute LogGrep in the way we described in
our code repository. Compress Logs with CLP and record
the storage cost and compressino speed. Query with "clg"
command in CLP. Since CLP can not process logic operators
like "and" and "not", we use CLP to execute the first part
connected by logic operators and use grep to execute the
following part.

[Result] The query latency of LogGrep is 1.94x to 42.00x
(13.74x on average) lower than that of CLP. Overall cost is
41% as much as that of CLP on average.


https://github.com/THUBear-wjy/LogGrep/tree/master
https://zenodo.org/record/7056802#.Yxm2VexBwq2
https://github.com/THUBear-wjy/openSample
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://github.com/y-scope/clp-core
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LogName QueryStr
Log A ERROR and state:REQ_ST_CLOSED and 20012 and reqld:5E9D21AD5E473938
Log B ERROR and Project:2963 and RequestId:5EA6F82FDF142E2
Log C ERROR
Log D project_id:30935 and logstore:res_p and inflow:5
LogE project:161 and logstore:????_ay87a and shard:99 and wcount:10
Log F ERROR not Userld:-2
Log G Operation:ReadChunk and SATADiskId:7 and From:tcp://10.7??2.22.2?2:????? and Traceld:3615b60b169820bf160d4acd7b8b8732
Log H ERROR
LogI WARNING and 2019-11-06 07
Log]J TraceType:PanguTraceSummary and SectionType:RPC_Seal AndNew not CountFail:0
Log K DELETE and /results/0 and 2019-11-04T02:26
Log L WARNING and Errorcode:0 and Packet id:172397858
Log M ERROR and exchange-client-24 and /results/10
Log N ERROR and project_id:51274
Log O error and ProjectId:2396 and 2020-04-14 04
Log P ERROR and CLICK_SAVE_ERROR
Log Q ERROR and PostLogStoreLogsHandler.cpp and Time:1622009998
Log R ERROR and part_id:510 and request id REQ_11.???2.722.72?
Log S TTY=unknown and /etc/init.d/ilogtaild and Aug 30 10
Log T ERROR and 39244 and 2020-04-08 05:5
LogU failed to read trie data and 1618152650857662364_3_149245463_199235229
Android ERROR and socket read length failure -104
Apache error and Invalid URI in request
Bgl ERROR and R00-M1-ND
Hadoop ERROR and RECEIVED SIGNAL 15: SIGTERM and 2015-09-23
Hdfs error and blk_8846
Healthapp Step_ExtSDM and totalAltitude=0
Hpc unavailable state and HWID=3378
Linux authentication failure and rhost=221.230.128.214
Mac failed and Err:-1 Errno:1
Openstack ERROR or WARNING and Unexpected error while running command
Proxifier HTTPS and play.google.com:443
Spark ERROR and Error sending result
Ssh Received disconnect from and 202.100.179.208
Thunderbird Doorbell ACK timeout
Windows Error and Failed to process single phase execution
Zookeeper ERROR and CommitProcessor

Table 1. Query commands used in evaluations. Some characters are changed to “?” due to privacy limitation.
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