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Abstract
This paper tries to accelerate data recovery in a large-scale
storage system with minimal interference to foreground traffic.
By investigating I/O and failure traces from a real-world large-
scale storage system, we find that because of the scale of the
system and the imbalanced and dynamic foreground traffic,
no existing recovery protocols can generate a high-quality
recovery strategy in a short time.

To address this problem, this paper proposes Dayu, a
timeslot-based recovery protocol, which only schedules a sub-
set of tasks which are expected to finish in one timeslot: this
approach reduces the computation overhead and naturally can
cope with the dynamic foreground traffic. In each timeslot,
Dayu incorporates four key algorithms, which enhance exist-
ing solutions with heuristics motivated by our trace analysis.

Our evaluations in a 1,000-node real cluster and in a 25,000-
node simulation both confirm that Dayu can outperform exist-
ing recovery protocols, achieving high speed and high quality.

1 Introduction

This paper describes our experience and methods to accelerate
data recovery in Pangu [1] , a real-world large-scale storage
system with 10K nodes and tens of TBs of storage per node.

As a cloud storage provider, AliCloud, the owner of Pangu,
needs to make a promise of data durability to its customers
(i.e., the chance of data loss is smaller than a threshold). For
marketing reasons, the owner has a strong motivation to im-
prove data durability, so that its promise can be appealing
compared to its competitors. This motivates us to investigate
whether it is possible to accelerate data recovery in Pangu,
because recovery speed is one of the determining factors of
data durability [2].

Similar to previous works [3–7], Pangu divides data into
chunks (usually tens of MBs), replicates these data chunks,
and distributes these replicas to different nodes. When a node
fails, Pangu re-replicates its data chunks: since the replicas of
∗Corresponding author: gyzh@tsinghua.edu.cn

these chunks are distributed to different nodes, Pangu asks all
these nodes to copy chunks in parallel [4, 8].

To re-replicate data chunks of the failed node, the recov-
ery protocol needs to schedule a source, a destination, and a
bandwidth for each of these data chunks. An ideal scheduling
algorithm should achieve at least the following two goals: first,
the algorithm should generate a high-quality strategy, which
should allow data re-replication to be completed as soon as
possible under the constraint that it has minimal impact on
foreground traffic; second, the speed of the scheduling algo-
rithm itself should be high enough so that it does not become
the bottleneck of data recovery.

To understand the quality and speed of existing scheduling
algorithms, we analyze the failure and I/O traces from a real
deployment of Pangu. We find none of the existing algorithms
can achieve both acceptable quality and acceptable speed,
because of the following challenges:

• Very-large scale: the largest deployment of Pangu has
more than 10K nodes and up to 72 TBs of storage (about
1.5M chunks) per node. Therefore, when a node fails,
the algorithm needs to decide how to recover all these
data chunks and each chunk has about 10K nodes as
candidate destinations.

• Tight time constraint: given the scale of the system, data
chunks of a failed node can be re-replicated with a high
degree of parallelism. Our simulation shows that if the
idle bandwidth can be fully utilized, the recovery can be
finished within tens of seconds, which means the schedul-
ing algorithm itself should complete within seconds.

• Imbalanced foreground traffic and available data: we
find a two-fold imbalance, which poses challenges to the
quality of scheduling. First, a number of nodes can have
significantly heavier foreground traffic than the others;
and second, some nodes can have more data chunks
available for re-replication.

• Dynamic foreground traffic: the foreground traffic can
change dramatically over time. To cope with such dy-
namic traffic, the recovery protocol needs to adjust its
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plan when it observes a significant change in the fore-
ground traffic, which again calls for fast scheduling.

Our simulation of existing scheduling algorithms shows
that, on the one hand, simple and decentralized algorithms
like random selection or best-of-two-random [9] can finish
scheduling quickly (i.e., high speed), but they often cause a
small number of nodes to be overloaded, increasing the recov-
ery time and impairing the performance of foreground traffic
(i.e., low quality). On the other hand, sophisticated and cen-
tralized algorithms, such as Mixed-Integer Linear Program-
ming [10–12], can effectively utilize available bandwidth and
avoid overloading a node (i.e., high quality), but they can take
prohibitively long to compute a plan given the scale of our
target system (i.e., low speed).

This paper proposes Dayu, a high-speed and high-quality
recovery protocol for large-scale, imbalanced, and dynamic
storage systems. The key idea of Dayu is motivated by the
observation that, to cope with dynamic foreground traffic,
we need to periodically monitor the foreground traffic and
adjust the recovery plan: in such a design, scheduling for
all data chunks of the failed node together is both computa-
tionally heavy and unnecessary, since the plan is likely to be
adjusted later. Following this observation, Dayu incorporates
a timeslot-based solution: it divides time into multiple slots,
whose length is determined by how frequent the underlying
storage system monitors and reports idle bandwidth; based
on such report, Dayu tries to schedule a subset of chunks so
that they can be re-replicated within the current timeslot; if
the actual re-replication of some chunks takes longer than
expected for whatever reason, Dayu will re-schedule them in
the next timeslot.

This approach brings two benefits: first, it reduces the com-
putation overhead of scheduling because in each timeslot, the
algorithm only needs to schedule a subset of tasks (about one
third on average in our experiments). Second, this solution
can naturally cope with the dynamic foreground traffic be-
cause Dayu’s decision is based on the information collected
at the beginning of each timeslot.

To realize this idea, Dayu incorporates four key techniques,
which enhance existing algorithms based on our observations:

• Greedy algorithm with bucket convex-hull optimization
to schedule tasks: Dayu uses a greedy algorithm to it-
eratively choose the most under-utilized candidate as
the source and destination for each task, till it finds
enough tasks to fill a timeslot. To reduce the computation
overhead, Dayu incorporates the convex-hull optimiza-
tion [13] and further proposes a bucket approximation
to reduce the size of the candidate set.
• Prioritizing nodes with high idle bandwidth but few avail-

able chunks: Our observation shows that such nodes
are likely to get under-utilized, if the scheduling algo-
rithm decides to replicate their chunks from other nodes.
Therefore, Dayu enhances the aforementioned greedy

algorithm with the following heuristic: if a chunk to be
re-replicated has a replica in such a prioritized node,
Dayu will assign the node as the source.
• Iterative WSS to allocate bandwidth for each task: To

minimize the completion time of chosen tasks, Dayu
enhances the weighted shuffle scheduling algorithm
(WSS) [14]: in each iteration, Dayu uses WSS to iden-
tify the bottlenecks in the remaining tasks, assigns a
weighted fair share of bandwidth to each task correspond-
ingly, and removes the bottleneck tasks and allocated
bandwidth.
• Re-scheduling stragglers: Straggler tasks will inevitably

occur due to mis-prediction of the foreground traffic or
unexpected hardware faults, so Dayu has to re-schedule
them in the next timeslot. Straggler tasks are different
from new tasks, since we prefer keeping their destina-
tions unchanged: otherwise, we will lose their existing
progress. Dayu first estimates whether it is worth chang-
ing their destinations, and then re-computes their sources
and allocated bandwidth.

Our evaluation of Dayu on a real deployment of 1,000
nodes shows that, compared to Pangu, Dayu increases the
recovery speed by 2.96× and increases the p90 latency (i.e.,
tail latency at 90th percentile) of the foreground traffic during
recovery by only 3.7%. Our simulation shows that Dayu out-
performs various existing solutions and can scale to a cluster
of 25K nodes.

2 Background and Observations

2.1 Background of Pangu
Pangu is the underlying storage system of AliCloud, one of
the largest public cloud providers in Asia [1]. Pangu inherits
the classic distributed file system architecture from previous
works like GFS [3], HDFS [5], Cosmos [6], and Azure [7].
It splits data into multiple chunks (the most common chunk
size is 64MB) and stores data chunks on a large number of
data servers called ChunkServers. A metadata server called
MetaServer maintains the metadata of the distributed file sys-
tem, such as the locations of data chunks. Given its very
large scale, Pangu incorporates multiple MetaServers, each
responsible for a subset of metadata [15–17]. Besides, Pangu
incorporates a RootServer to route clients to the correspond-
ing MetaServer. To achieve uniform data distribution, Pangu
uses random or weighted random mechanism to place data on
different ChunkServers.

Like most existing systems, Pangu replicates data chunks
(most chunks have three replicas) so that if a node fails, Pangu
can recover its data chunks by copying from other replicas.
For each data chunk to be recovered, Pangu needs to choose a
source and a destination for data copy: there are usually a few
candidate sources depending on the number of replicas and a
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large number of candidate destinations. The current version
of Pangu randomly picks a source and a destination for each
data chunk to be recovered.

In the current deployment of Pangu, we observe that the
network bandwidth is usually the bottleneck when performing
such data recovery: most Pangu nodes are equipped with 1Gb
or 10Gb Ethernet, whose bandwidth is smaller than the aggre-
gate disk bandwidth; the deployment of high-speed devices,
such as Infiniband, is limited due to cost reasons. Pangu’s
core network switches are organized using CLOS topology
or fat-tree topology [18–21], so that there is no oversubscrip-
tion. The core-to-rack link may be oversubscribed depending
on the configuration: if the link is oversubscribed, the rack
switch is usually the bottleneck; if not, the NICs of end-hosts
are the bottlenecks.

During data recovery, Pangu is still servicing foreground
applications, which may contend for network bandwidth. To
limit the interference of data recovery on foreground traffic,
Pangu provides a mechanism to limit the bandwidth utiliza-
tion of one or a group of links on a node. With this mechanism,
we can set a limit on the bandwidth of the recovery traffic,
depending on how much interference one is willing to tolerate
and the bandwidth of the foreground traffic. In Dayu, we limit
the bandwidth of the recovery traffic on each node to be

Brecover = max(α×Btotal−B f oreground ,Bmin) (1)

In this equation, Btotal is the total bandwidth of the node;
B f oreground is the bandwidth of the foreground traffic; and
α is a parameter to control the interference of the recovery
traffic on the foreground traffic. We set α to be 75% and our
experiments show that using this setting will incur negligible
impact on p90 latency of the foreground traffic. As a storage
system mainly designed for large files, Pangu does not aim at
optimizing extreme tail latency (e.g. 99.9 percentile [22]), so
this setting can satisfy our requirement, and if one is targeting
even smaller interference, he/she can further decrease α. Bmin
is the minimal bandwidth the node will assign for recovery,
which is to ensure that recovery will not be too slow. Both
Pangu and Dayu set Bmin to 30MB/s.

2.2 Observations
In this subsection, we analyze the workload and data place-
ment from one deployment of Pangu to understand how they
affect data recovery. We acquire such information from a data
center of approximately 3500 nodes, each with two 1G NICs
and 11 2TB hard drives. In this case, the aggregate bandwidth
of hard drives is larger than that of the NICs. The storage
system mainly serves online data processing service (ODPS),
including MapReduce and data query. What we analyze in-
cludes 1) a checkpoint of a MetaServer in April 2018, which
records the metadata related to the size and distribution of
the data chunks, and 2) the trace of the foreground traffic
and background recovery traffic in the coming week. Unless

otherwise noted, our simulation experiments are on this 3500-
node cluster throughout this paper. We study the scalability
of Dayu beyond 3500 nodes in Section 5.2.

We make the following observations from the analysis:

Observation 1 Each node stores hundreds of thousands
of chunks.

Figure 1(a) shows the CDF of the number of chunks on
each node. We can observe that a majority of the nodes have
around 250K chunks per node. This observation suggests two
things: first, a recovery protocol needs to schedule how to
recover so many chunks when a node fails. Second, when one
node fails, each of the remaining nodes will participate in the
re-replication of about 70 chunks on average (250K/3500).

Observation 2 The foreground traffic consumes less than
half of the bandwidth on average. If all available bandwidth
(computed using Equation 1) can be used for recovery, the
system can recover 250K chunks in 51 seconds on average.

We calculate the optimal recovery time for 50 different
cases, assuming all available bandwidth can be utilized, and
present the CDF of the recovery time in Figure 1(b).

This observation suggests that, although there are a large
number of chunks to recover for each node failure, the highly
parallel recovery in a large-scale system can recover these
chunks in a short time, which calls for fast scheduling during
the recovery protocol. However, the actual recovery in the
trace often takes 2-4 minutes, i.e. 2.35−4.70× of the ideal
recovery time, which motivates our further investigation.

Observation 3 The foreground traffic is experiencing sig-
nificant short-term load imbalance.

The trace we analyze records the foreground bandwidth
of each node every 15 seconds. To understand whether the
foreground traffic is balanced, we compute the coefficient
of variation (CoV, standard deviation as a percentage of the
mean) of foreground bandwidth in each timeslot, which is
a standard metric to measure the variation of values. Then
we draw the distribution of CoVs of different timeslots in
Figure 1(c) and Figure 1(d). As shown in this figure, the CoVs
of most timeslots are between 0.4 and 0.6, which is quite
significant. Interestingly, if we measure such imbalance in a
coarser granularity (i.e. one hour and one day), the imbalance
becomes much smaller. Such results indicate that the system is
relatively load balanced in a long term, but more imbalanced
in a short term, which creates a challenge for data recovery:
traditional load balancing techniques, such as data migration,
mainly targets long-term imbalance, because they cannot run
very frequently; data recovery, however, is mainly affected
by short-term imbalance, because it can finish within tens to
a few hundred seconds. This observation suggests that our
recovery protocol must take such short-term imbalance into
consideration, without relying on load balancing techniques.
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(b) OB2: CDF of the optimal recov-
ery time with 50 cases
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(f) OB4: CoV of SCi
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(g) OB4: Correlation between recov-
ery traffic of node j and SC100
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Figure 1: Observations from a 3500-node real-world system

Observation 4 Replicas of chunks on a given nodes are
distributed unevenly among the other nodes.

To understand how replicas of chunks on a given node are
distributed among the other nodes, we define SCi

j as the size
of the chunks held by both node i and node j, which shows
how much data node j can provide as source during recovery
if node i fails.

We first sample a specific node i = 100. Figure 1(e) shows
the distribution of SC100

j for different j values. We can see that
the histogram of the distribution fits the bell curve: this is ac-
tually mathematically provable (i.e. Central Limit Theorems)
if we assume chunk placement is random. To understand such
imbalance in the whole cluster, for each node i, we calculate
the CoV of all the SCi

j values and then we draw the CDF of
CoVs of all nodes in Figure 1(f). One can observe that for a
large portion of nodes, the distribution of SCi

j is not balanced.
To understand how such imbalance affects recovery, we

simulate the failure of node 100 with Pangu’s random node
selection strategy (Figure 1(g)) and find that there is a strong
correlation between the size of outgoing recovery traffic of
node j and SC100

j . That means a node with a few (many) com-
mon chunks with the failed node will do little (much) work
during recovery, but if the node has much (little) available
bandwidth, it will get under-utilized (overloaded).

Observation 5 Foreground traffic usually fluctuates within
14.4% of max bandwidth, but sometimes can change dra-
matically.

Figure 1(h) shows how one node’s foreground traffic
changes in 5 hours. The delta bandwidth is the difference

of the average bandwidth utilization in two adjacent timeslots.
We can observe that in more than 95% of the cases (between
“p2.5” and “p97.5” in Figure 1(h)), the absolute delta band-
width is lower than 36MB/s, which is 14.4% of the maximum
bandwidth (250 MB/s since each node has two 1Gb NICs).
However, in the remaining 5% cases, the delta bandwidth can
reach up to two thirds of the maximum bandwidth. Although
the percentage of such extreme cases is small, they frequently
happen in recovery, because the highly parallel recovery usu-
ally involves many nodes. Our simulation shows that they can
create stragglers in recovery and thus are one of the major
reasons why recovery speed is not ideal.

3 Dayu Overview

We call the re-replication of one data chunk a “recovery task”
in the rest of the paper. Dayu achieves fast data recovery
and low application interference by introducing a centralized
scheduler called an ObServer, which performs timeslot-based
recovery task scheduling.

Dayu assumes all the data servers periodically report their
chunk placement and network utilization to the ObServer,
and all the metadata servers send information of the recovery
tasks to the ObServer. The rest of this paper presents the
ObServer’s scheduling algorithm, which decides the source,
the destination, and the bandwidth of a recovery task.

To achieve high-speed and high-quality scheduling, the
key idea of Dayu is to schedule recovery tasks in multiple
batches, instead of scheduling all of them together. This de-
sign choice is motivated by several reasons: first, since each
node is usually involved in tens of recovery tasks (Observa-
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Figure 2: Timeslot-based scheduling in Dayu

Ttimeslot Length of a timeslot
Bi

recover_in/out Node i’s available incoming/outgoing
bandwidth for recovery (by Equation 1)

st Size of recovery task t
ci

in/out Total size of incoming/outgoing recov-
ery tasks assigned to node i

α, β Parameters

Table 1: Denotations

tion 1), scheduling tasks in multiple batches can still allow
each node to fully participate in each batch and thus fully
utilize its available bandwidth; second, scheduling tasks in
batches can naturally cope with dynamic foreground traffic
and infrequent measurement errors, because when observing
any changes in the foreground traffic, Dayu can make adjust-
ment in the next batch; finally, scheduling tasks in batches
naturally reduces the computation overhead of the scheduling
algorithm, because for each batch, the algorithm only needs
to schedule a subset of tasks.

To implement this idea, as shown in Figure 2, Dayu di-
vides the whole recovery time into multiple fixed-length time
slices (called timeslots throughout the paper). At the begin-
ning of a timeslot, the ObServer collects the latest state of the
data servers. Using the state obtained, the ObServer chooses
and schedules a subset of recovery tasks in this timeslot, in-
cluding those recovery tasks scheduled in the last timeslot but
unfinished yet. To fully utilize the available bandwidth, Dayu
overlaps multiple timeslots so that the information gathering
and task scheduling of slot n is executed before the end of
slot n− 1. The length of a timeslot is determined by how
frequently the underlying storage system collects and reports
state.

As mentioned in Section 2.1, the bottleneck of data recov-
ery is either the NICs of the end hosts or the rack switch, and
to simplify description, the following text assumes the NICs
of the end hosts are bottlenecks, and one can easily extend it to
support bottleneck rack switches. Table 1 lists the denotations
used in the paper.

Goals. Dayu tries to achieve the following goals.

• Goal 1: Utilize the available bandwidth as much as
possible. This is a natural goal to minimize the overall
recovery time. If we were to fully utilize the available

bandwidth in one timeslot, the total size (S) of the chunks
that can be replicated in the timeslot would be:

S = min( ∑
i∈Nodes

Bi
recover_in, ∑

i∈Nodes
Bi

recover_out)×Ttimeslot (2)

• Goal 2: Finish as many tasks as possible in the target
timeslot. We hope that the scheduled tasks can actually
finish within the target timeslot: otherwise, we have to
re-schedule them again, which increases the computa-
tion overhead. This goal may look similar to the first one,
but it is not: the first goal suggests us to oversubscribe
the network bandwidth (i.e. schedule more tasks than the
bandwidth can handle), so that if the foreground traffic
drops, we can still utilize such extra available bandwidth;
the second goal, however, suggests us to undersubscribe
the network bandwidth so that if the foreground traffic
increases, we can still finish the scheduled tasks. There-
fore, Dayu has to make a trade-off between these two
goals.
• Goal 3: Minimize the chance of significant stragglers.

Because we cannot accurately predict the future fore-
ground traffic, stragglers will inevitably occur. We prefer
many small stragglers to a few significant stragglers, be-
cause many small stragglers can be re-scheduled and
executed in parallel to minimize the recovery time. How-
ever, this goal obviously contradicts with the second goal,
so Dayu has to make a trade-off as well.

Overview of Dayu’s algorithm. To achieve these goals,
Dayu incorporates four key techniques, by enhancing existing
algorithms with heuristics and approximations motivated by
our observations: 1) a greedy algorithm with bucket convex
hull optimization to select the source and the destination for
each recovery task (§4.1); 2) a heuristic-based algorithm to
prioritize nodes with a few common chunks with the failed
node but a high available bandwidth (§4.2); 3) an iterative
WSS algorithm to assign bandwidth for each task (§4.3);
and 4) a heuristic-based algorithm to minimize the cost of
re-scheduling straggler tasks (§4.4).

4 Design of Dayu

4.1 Selecting Source and Destination
Dayu iteratively scans all tasks and determines the source and
the destination for each task, till it can find enough tasks to
fill S (Equation 2). The candidate sources of a task include all
nodes which hold a replica of the corresponding chunk; the
candidate destinations of a task include all nodes which are
not in the same rack of its sources.

To achieve the goals given in Section 3, Dayu incorporates
a greedy algorithm: for each task, Dayu chooses the most
under-utilized node in its candidate sources and destinations;
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Figure 3: Reduce computation overhead with dynamic convex
hull optimization. Bi and ci are short for Bi

recover_in and ci
in.

if Dayu finds that even the most under-utilized candidate is
going to be saturated, Dayu will skip this task.

The first question we need to answer is how to quantita-
tively measure the utilization of a node. We have tried several
options, and through simulation, we decide to use the expected
task finish time

cin/out
Brecover_in/out

(cin/out is the total size of the in-
coming/outgoing tasks assigned to this node) as the metric to
evaluate the utilization of a node, because this metric achieves
a nice balance between our first two goals.

Therefore, when choosing the source for task t, Dayu scans
all its candidate nodes and chooses the one with the minimal

st+cout
Brecover_out

as the source. Such scanning is not computationally
expensive, since most chunks have three replicas and one
of them is already lost. Afterward, Dayu checks whether
assigning task t to the source will saturate the source, i.e. its

st+cout
Brecover_out

> Ttimeslot : if so, Dayu will drop task t, because this
means there is no way to complete task t in this timeslot.

Likewise, when choosing the destination for task t, Dayu
chooses the node with the minimal st+cin

Brecover_in
. However, naively

scanning all candidate destinations is computationally heavy,
since the number of candidate destinations is large. To make
things worse, greedy algorithms cannot be parallelized be-
cause each iteration depends on the result of the previous
iteration. Our simulation on a 3500-node cluster shows that
naively scanning all candidate destinations for each task can
only achieve a speed of less than 30,000 tasks per second.
Since our statistics shows that in one timeslot, Dayu can
usually complete 60,000—150,000 tasks, this means naively
scanning itself will take 2-5 seconds, which is not ideal. To
address this challenge, we incorporate the dynamic convex
hull optimization to accelerate this computation.

One can refer to [13] for the formal description of the
convex hull optimization, and here we present an intuitive
description. For each surviving node i, we draw a point
(Bi

recover_in,c
i
in) in Cartesian coordinate system, as shown in

Figure 3(a). Then for task t with size st , we draw another
point (0,−st) in Figure 3(a). Afterward, we draw a line from
(0,−st) to each other point: since the slope of each line is

ci
in+st

Bi
recover_in

, finding the destination node for task t is equivalent

to finding the line with the lowest slope.

We can maintain a dynamic convex hull to quickly search
the line with the lowest slope. In a two-dimensional space,
a convex hull is like a rubber band that wraps all the points
tightly, where the lower convex shell is the lower part of
this convex hull. We refer the point set of the lower convex
shell as H (here we connect points in H together to form
the lower convex shell as shown in Figure 3(a)). The points
in H are connected counterclockwise. Then for a point ph
with precursor point and successor point in set H, the slope of
line ph−1→ ph must be less than or equal to the slope of line
ph→ ph+1. We can find the node c in set H whose connection
with point (0,−st ) has the smallest slope using binary search
and the time complexity is O(log |H|).

After Dayu assigns task t to node i, its ci
in is incremented

by st . Therefore, Dayu needs to adjust the point of node i as
well as the lower convex shell H: when a point ph in H moves
up, Dayu identifies the precursor (ph−1) and successor (ph+1)
of ph in original H, and scans all the points between them to
find the new member(s) of H. The convex hull optimization
reduces the complexity of scanning destination nodes from
linear to sub-linear, without affecting the results of the greedy
algorithm.

We further propose an approximate solution to reduce the
candidate set of the lower convex shell, in turn boosting the
speed of the algorithm. As shown in Figure 3(b), we divide the
range of available incoming bandwidth into multiple equal-
sized buckets. If nodes i and j are in the same bucket, they are
considered to have approximately identical available band-
width, i.e. Bi

recover_in ≈ B j
recover_in. Without loss of generality,

we suppose ci > c j. Then node i cannot be the member of the
lower convex shell. Therefore, only the lowest node within
the same bucket can become the member of the lower convex
shell. All those lowest nodes (hollow circles in Figure 3(b))
form a reduced candidate set, denoted C. We can construct
the convex shell H from this reduced candidate set C, instead
of the full set of nodes. After Dayu assigns a task to a node, it
adjusts the point of this node as well as the reduced candidate
set.

The bucket size determines the reduction degree of the
bucket approximation. We use 1 MB/s as the bucket size in our
experiments, and our simulation shows an average reduction
factor of 22.8, and as a result, Dayu can complete selecting
sources and destinations for about 210,000 chunks within one
second—this is seven times faster than naive scanning.

Such bucket approximation certainly brings inaccuracy to
the greedy algorithm, but such inaccuracy already exists as
a result of measurement errors and fluctuation of foreground
traffic. Therefore, as long as the bucket size is small, our ap-
proximation should not significantly increase such inaccuracy.

998    2019 USENIX Annual Technical Conference USENIX Association



4.2 Prioritizing Underemployed Nodes

Our simulation on our greedy algorithm reveals the same
problem as our Observations 3 and 4: nodes with high avail-
able bandwidth but only a small number of available chunks
are likely to get under-utilized, which violates our first goal.
We call them underemployed nodes in the rest of the paper.
For example, suppose node A has an available outgoing band-
width of 50MB/s and can be the source of Tasks 1 and 2; node
B has an available outgoing bandwidth of 60MB/s and can be
the source of Tasks 1-4; all tasks have the same size. In this
example, the optimal schedule should let A be the source of
Tasks 1 and 2, and B be the source of Tasks 3 and 4. However,
if our greedy algorithm scans Task 1 first, it will assign it to
node B, because B has more available bandwidth than A at
this moment.

This observation suggests that, for a chunk which has a
replica in an underemployed node, it’s better to use the un-
deremployed node as the source. To achieve this goal, we
incorporate a distribution-driven prioritizing strategy: the Ob-
Server first sorts all the nodes according to their available
outgoing bandwidth in descending order, and sorts all the
nodes according to their total sizes of common chunks in
ascending order. Then, the ObServer picks the first β (5% in
our typical settings) nodes from those two node lists respec-
tively to form two sets, and gets the underemployed node set
by computing the intersection of those two sets. Next, the
ObServer selects all the recovery tasks that have replicas in
the underemployed nodes, and puts them in a queue called
“prioritized queue”; the ObServer puts the rest of the tasks in
another queue called “normal queue”.

We modify our greedy algorithm (§4.1) to incorporate this
heuristic: the ObServer will first scan tasks in the prioritized
queue and directly use the corresponding underemployed
server as the source, instead of using the most under-utilized
candidate. There are two corner cases: 1) it is possible that a
prioritized task has replicas in more than one underemployed
servers. In this case, the ObServer chooses the most under-
utilized one among them; 2) though rare, it is possible that the
underemployed server is saturated. In this case, the ObServer
degrades the prioritized task into the normal queue, so that
later we can still try its non-prioritized candidates.

Overhead. When searching underemployed nodes, Dayu
maintains two heaps, whose keys are the available outgoing
bandwidth and the total size of common chunks respectively,
and whose values are the IDs of nodes. The ObServer will
first build these two heaps, which is an O(n) operation (n
is the number of nodes) [23], and then pop 5% entries from
these two heaps, with each pop an O(logn) operation. Our
experiment shows that heapifying 10,000 entries and then
popping up 5% of them only take a few miliseconds.

4.3 Allocating Bandwidth for Each Task

Given the source and destination of each recovery task, we
need to answer how fast each task should proceed. A naive
solution is to set a coarse-grained limit on all tasks within one
node using Brecover_in/out and let them compete for bandwidth.
However, our experiments have revealed two problems with
this approach: first, this approach may cause a congestion
when the source’s outgoing limit is larger than the destina-
tion’s incoming limit. Although TCP can resolve such con-
gestion eventually, it will cause packet drops and slow down
recovery. Second, the competition may cause one task to be
significantly slower than others, causing a significant straggler
and violating our third goal.

Therefore, in this step, Dayu tries to set a constant rate
for each task in one timeslot, with the goal of maximizing
bandwidth utilization. Recall that we assume the NICs of the
end hosts are the bottlenecks, so this step only considers the
bandwidth utilization at the end hosts. Even so, this is still a
challenging problem, since allocating bandwidth for a task
will consume the bandwidth on both sides.

Dayu’s solution is based on weighted shuffle scheduling
(WSS) [14], a mature network scheduling algorithm designed
for scheduling large data flows like data shuffle in MapRe-
duce [24]. The key idea of WSS is that, to finish all the pair-
wise transfers at the same time, it guarantees that 1) transfer
rates are proportional to data sizes for each transfer, and 2) at
least one link is fully utilized. With WSS, only the bottleneck
links (quite a minority) are fully used, while all the others
have an amount of bandwidth left. In our scenario, however,
WSS is not ideal: when considering unpredictable growth in
foreground traffic, which may cause a non-bottleneck link to
become a bottleneck in the middle of a timeslot, WSS may
cause a waste of bandwidth, because Dayu could utilize more
bandwidth of this link at the beginning.

To this end, Dayu introduces an iterative WSS solution to
allocate bandwidth for each task. Its key idea is that, without
delaying the bottleneck tasks, we should finish other tasks as
early as possible, so as to reduce their completion time and to
improve bandwidth utilization. Following this idea, if there is
any remaining bandwidth after running one iteration of WSS,
Dayu will use another iteration of WSS to identify the next
bottleneck and allocate the remaining bandwidth.

To be specific, Dayu maintains a remaining incoming and
outgoing bandwidth Bi

remain_in and Bi
remain_out for each node,

whose initial values are Bi
recover_in and Bi

recover_out . In each

iteration, Dayu first finds the node with the longest ci
in

Bi
remain_in

or ci
out

Bi
remain_out

, denoted T ∗: the corresponding tasks are the bot-

tlenecks. Then, Dayu allocates Bt =
st
T ∗ bandwidth to each

task t, indicating that to minimize the completion time, the
bottleneck tasks must be assigned a weighted fair share of the
bandwidth, such that the weight of the share is proportional
to st . Afterward, Dayu updates the remaining bandwidth as

USENIX Association 2019 USENIX Annual Technical Conference    999



Bi
remain_in−=

ci
in

T ∗ and Bi
remain_out−= ci

out
T ∗ for each node i, re-

moves the bottleneck tasks from their corresponding nodes,
and updates the cin/out values of these nodes. Then Dayu
moves to the next iteration with the remaining tasks, till there
are no tasks remaining or the remaining tasks have an accept-
able transmission time (i.e., less than or equal to the length
of a timeslot) with their allocated bandwidth. Note that if a
task goes through multiple iterations, its allocated bandwidth
is the sum of the allocated bandwidth in each iteration.

Iterative WSS overcomes the drawbacks of WSS: since
iterative WSS tries to allocate all bandwidth, it is not possible
for the system to waste bandwidth when there are tasks that
can utilize such bandwidth.

Our experiment shows that for a 3500-node cluster, each
iteration will take at most 15 ms. Since dynamic convex hull
node selection algorithm keeps the “ c

B " values of most nodes
to be close, the iterative WSS algorithm can usually finish
within five iterations (i.e. 75 ms), which is acceptable.

4.4 Re-scheduling Straggling Tasks
Due to inaccurate workload estimation, sub-optimal schedul-
ing, hardware exceptions, and etc., some tasks could not be
finished at the end of one timeslot. Dayu has to re-schedule
such straggler tasks in the next timeslot, but cannot simply
treat them as new tasks, because changing the destination
of one straggler task requires re-transmitting the task from
the beginning, causing waste of bandwidth. Therefore, Dayu
should avoid changing the destination when possible—this is
a constraint new tasks do not have.

Identifying stragglers. Recall that Dayu overlaps different
timeslots so that the scheduling phase of the current timeslot
happens a short period of time (denoted as Tschedule) before
the end of the last timeslot (Figure 2). Therefore, Dayu has to
predict which tasks will become stragglers: for one unfinished
task, Dayu uses its speed so far to estimate its speed till the
end of the last timeslot; if the task cannot finish given the
estimated speed, Dayu puts those tasks into a straggler set.

Prediction can certainly be inaccurate. If Dayu marks a task
as a straggler but it actually finishes with the last timeslot, the
corresponding nodes will simply ignore the new transmission
plan scheduled by Dayu. Conversely, if a task is not marked
as a straggler but it cannot finish within the last timeslot, the
corresponding node will not get a new transmission plan,
and thus will stick with the old plan. Both cases may cause
inefficiency, but since Tschedule is much smaller than Ttimeslot ,
these two kinds of misidentification have little impact in our
experiments.

Scheduling stragglers. First, Dayu will check whether the
straggler set itself will saturate some nodes in the current
timeslot. If any, the ObServer iteratively evicts the least fin-
ished task from each saturated node until it is no longer sat-
urated. Those evicted tasks are categorized into two groups:

RootServer

ObServer

ChunkServer
...

data 
migration

...

instruction

state

state collectMetaServer

generate 
task

ChunkServer

data 
migration

...

Figure 4: Our implementation of Dayu on Pangu. Gray boxes
stand for functions or components Dayu adds to Pangu.

tasks evicted from their sources and tasks evicted from their
destinations. They are rescheduled in different manners.
• For each straggler task in the first group, the ObServer

chooses a source and a transfer rate (the same as a new
task), while keeping the destination unchanged, which
means the task can resume from its current progress.
• For each straggler task in the second group, the ObServer

reschedules it as a new task.

For unevicted straggler tasks, Dayu keeps their sources and
destinations unchanged, and allocates the bandwidth with the
iterative WSS algorithm. They can resume from their current
progress.

Compared to treating stragglers as new tasks, Dayu tries
to minimize re-transmitting data, since it only changes the
destination of the second group of stragglers (quite a minority)
and re-transmits their data. Compared to letting stragglers
continue with their original plans, our experiments show that
the introduction of straggler adjustment improves the overall
recovery speed by 15.6%.

It should also be noted that how to detect and report slow
hardware is an orthogonal problem [25–27]. Dayu assumes
the system has some mechanism to measure and report the
actual bandwidth of each node.

5 Evaluation

Our evaluation tries to answer the following questions:
1. How fast can Dayu complete one typical full node re-

covery and how much interference does Dayu introduce
between background and foreground? (§5.1)

2. Could Dayu scale to even larger systems? (§5.2)
3. In Dayu, how much benefit does each key technology

bring? (§5.3)
4. How does the setting of the parameters affect the perfor-

mance of Dayu? (§5.4)

Implemention. We implement Dayu upon Pangu, by mod-
ifying MetaServers, RootServer, and ChunkServers of Pangu
and introducing Dayu’s ObServer into Pangu, as shown in
Figure 4. The ObServer is aware of the information of all
the recovery tasks as well as the global information provided
by the RootServer, such as the chunk placement and the net-
work utilization at each ChunkServer. As Pangu monitors
and reports the states of ChunkServers every 15 seconds, the
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timeslot length of this implementation is set to 15 seconds.
Upon detection of a node failure in Pangu, MetaServers report
all the data chunks of the failed node to the ObServer, which
schedules how to re-replicate these data chunks. Afterwards,
the ObServer instructs the ChunkServers to execute recovery
tasks (i.e. re-replicate data chunks). Finally, after a recovery
task is completed, the ObServer updates the MetaServers to
reflect the locations of the newly-re-replicated chunk.

Testbed. We have deployed the Pangu-based Dayu imple-
mentation on a 1000-node cluster. Each node has two 12-core
Intel E5-2630 processors, 96GB DDR4 memory, two 10Gbps
NICs, 10 or 11 2TB hard disks, and Linux 3.10.0. Since our
traces are collected from a cluster with 1Gbps NICs but our
testbed is equipped with 10Gbps NICs, we add a traffic control
to our testbed so that each NIC can only use 1Gbps bandwidth.

We have also built a simulation environment to test Dayu
with the scale of 3,500 nodes or more. We run the simulation
in a server with two 16-core Intel E5-2620 processors, 64GB
DDR4 memory, and Linux 3.10.0.

Methodology. For experiments on real-world systems, we
trigger data recovery by shutting down one ChunkServer.
When performing recovery, we replay the trace collected from
the real-world cluster system (§2.2). Since our testing cluster
is smaller than the cluster where the trace is from, we reshape
the trace to fit the cluster size by trimming or redirecting
some requests, while keeping the ratio of read and write, the
pressure on each node, and the degree of imbalance among
nodes [28]. We record both the recovery time and the inter-
ference between the foreground and recovery traffic, which is
measured by comparing the p90 latency (i.e., tail latency at
90th percentile) of the foreground requests with and without
recovery traffic.

In the simulation experiments, we simulate the failure of a
ChunkServer by sending its chunk information to Dayu. Since
we do not actually run the system, we need to simulate the
interference between the foreground and the recovery traffic.
Due to the scale of the system, request level simulation takes
very long, so we use flow level simulation as in [29, 30]. It
simulates the bandwidth utilization of each link and periodi-
cally updates the utilization according to the foreground and
recovery traffic information. We define the interference fac-
tor as the ratio between the overload traffic size and the link
bandwidth, as follows:

Bi
overload = max(Bi

recover +Bi
f oreground−75%×Bi

total ,0) (3)

Finter f erence =
∑i∈Nodes Bi

overload

∑i∈Nodes Bi
total

(4)

The reason we define such an interference factor is that if the
total bandwidth utilization exceeds 75% of the NIC’s band-
width, the foreground latency will increase significantly. To
quantitatively understand this simulated interference factor,

we map them to the p90 latency in the real-world experi-
ments (§5.4): the short conclusion is that an interference factor
smaller than 2% indicates very small interference and a factor
close to or larger than 6.5% indicates very large interference.
In our simulation experiments, we simulate 50 failure cases
by randomly choosing 50 pairs of failed nodes and their fail-
ure time. For each algorithm, we simulate its performance on
all the 50 cases and report its average performance numbers.

In our following experiments, Figure 5 presents the results
from the real-world systems and the other figures present the
results from the simulation experiments.

Comparison. In the experiments on the real-world sys-
tems, we compare Dayu with Pangu’s original re-replication
strategy, which adopts disk utilization aware random data
placement and static rate control. We use three configura-
tions Pangu-slow (limit recovery traffic to 30MB/s, which
is the default configuration in production systems), Pangu-
mid (90MB/s), Pangu-fast (150MB/s) as the baselines.

In the simulation experiments, we compare Dayu with dif-
ferent scheduling algorithms used in state-of-the-art systems
(Table 2), with the exception of MCMF since its optimized
solver is not open sourced. For fairness, we keep the node
prioritizing and straggler adjustment part of Dayu, and plug
in different node selection and bandwidth allocation algo-
rithms. Specifically, when selecting the destination of recov-
ery tasks, we compare Dayu’s bucket dynamic convex hull
algorithm (C) to the following algorithms: 1) Random (R),
which randomly selects a node as the transmission source and
destination; 2) Best-of-two-random (B2R), which first chooses
two ChunkServers randomly, and then picks the lighter-loaded
one as the source or destination [4, 9]; 3) Weighted ran-
dom (WR), which uses the available bandwidth as the weight
to randomly select a node; 4) Greedy1 (G1), which scans all
candidate ChunkServers as [31, 32], then in our scenario finds
the one with minimal c

B . 5) Greedy2 (G2), which chooses the
lightest-loaded ChunkServer, by maintaining a red-black tree.
All greedy algorithms, including Dayu, are executed using a
single thread; all random-based algorithms are executed us-
ing 16 threads. Note that although random-based algorithms
can be distributed to reach even higher speed, we find their
speed is not the bottleneck anyway in our experiments. We
also test the MILP algorithm with a state-of-the-art MILP
solver Gurobi [33], but find it can only finish computation for
a small-scale cluster; for a 3500-node cluster and only 2000
tasks, it cannot finish computation after 125 seconds and thus
we do not report its results. When determining the rate of each
task, we compare Dayu’s iterative WSS (W) with deadline-
based allocation (DA), which assigns a rate of st

Ttimeslot
to task

t so that a task can be finished in one timeslot.

5.1 Overall Performance
Evaluation on the Real-world Systems. Figure 5 shows
the recovery times and the p90 latency of the foreground re-
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System Algorithm
Commons [3, 5–7] Random placement

RAMClould [4] Best-of-two-random
CAR [31] Greedy1
PPR [32] Greedy1

Mirador [34] Greedy2
DH-HDFS [35] MILP
Sparrow [36] Best-of-two-random

Firmament [37] MCMF
Table 2: State-of-the-art systems and their algorithms.
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Figure 5: The recovery time and the p90 latency during recov-
ery in real-world experiments

quests during recovery. In this test, we shutdown a server to
create 15TB of data to recover, and approximately 990 sur-
viving ChunkServers are responsible for recovery. For com-
parison, we add an “Ideal” entry in Figure 5, which estimates
the optimal recovery time assuming all available bandwidth
(α = 75%) can be utilized, and introduces no interference on
the foreground traffic (i.e., the foreground latency is identical
to the one without recovery).

As shown in the figure, Dayu achieves near-optimal re-
covery speed as well as low interference. First, Dayu is ap-
proaching the ideal recovery speed, as its recovery time is
1.19× longer than “Ideal”: this is 2.96× and 1.24× faster
than Pangu-slow (default) and Pangu-mid configurations re-
spectively. Compared with the Pangu-fast configuration, al-
though Dayu has a slightly slower recovery speed (0.93×),
it introduces far less interference on the foreground traffic.
Considering the interference of the recovery traffic on the
foreground traffic, Dayu’s p90 latency is only 1.04× longer
than “Ideal”. Pangu-slow has a slightly lower interference
with its p90 latency nearly the same as “Ideal”; Pangu-mid
and Pangu-fast create unacceptable interference as their p90
latencies are 4.23-48.14× higher than “Ideal”. Due to the
high interference to the foreground traffic, Pangu-mid and
Pangu-fast are seldom used on production clusters. In sum-
mary, compared with the different settings in Pangu, Dayu
achieves close-to-optimal recovery time and interference.

Evaluation on the Simulation Systems. Figure 6 shows
the results of simulation experiments. Again, compared with
other algorithms, Dayu achieves a good balance between re-
covery speed and interference.
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Figure 6: Data recovery in simulation (Dayu uses C+W)

In terms of recovery speed, Dayu’s combination of dy-
namic convex hull node selection and iterative WSS (C+W)
can achieve the shortest recovery time among all algorithms,
which is 1.14× longer than the ideal recovery time. Com-
pared to other algorithms, dynamic convex hull node selec-
tion achieves the fastest recovery speed, which is 1.12× faster
than G1, the second best one. Note that though G1 is close
to Dayu in this experiment, it does not scale well due to its
high computation overhead (§5.2). For the greedy-based al-
gorithms including Dayu, iterative WSS is slightly faster than
deadline-based allocation, because the former can finish the
last timeslot early when tasks are rare, while the latter must
finish tasks at the end of the last timeslot. For random-based
algorithms, such effect is unclear because the recovery speed
is mainly determined by the selection of the sources and des-
tinations.

In terms of interference on foreground, Dayu has accept-
able interference factor (recall that a factor of 2% is small
and a factor larger than 6.5% is unacceptable). With the same
bandwidth allocation strategy, Dayu’s node selection algo-
rithm and other greedy algorithms have slightly larger inter-
ference than those random based algorithms, because greedy
algorithms usually utilize more estimated available bandwidth.
When the estimation of the foreground traffic has some errors,
the interference will be slightly larger. With the same node
selection algorithm, iterative WSS consistently brings lower
interference than deadline-based allocation (DA).

5.2 Scalability
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Figure 7: Dayu’s scalability
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We evaluate the scalability of Dayu beyond 3,500 nodes. To
measure the full capability of different algorithms, we assume
there are infinite number of recovery tasks and simulate how
much data each algorithm can recover in 20 timeslots. As the
scale of the simulated clusters are larger than our observed
cluster, we randomly generate block placement based on the
statistics from our collected traces; we randomly pick the
foreground trace from one real node for one simulated node.

As shown in Figure 7, Dayu can scale to 25,000 nodes
and till that point, the performance of Dayu is higher than all
other algorithms. We do not test even larger scales because
they are too far away from our target (10K nodes). Besides
Dayu, all random algorithms scale pretty well, which is as
expected, though their performance is not as good as Dayu. G1
does not scale to more than 5,000 nodes because of its high
computation overhead. Note that as greedy algorithms, Dayu
and G2 will eventually stop scaling at some point because
of their centralized computation, but at least for the scale we
target now and in the near future, the simulation shows that
Dayu is fast enough and can provide better quality.

5.3 Effects of Individual Techniques
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Figure 8: Effects of prioritizing underemployed node (P) and
re-scheduling stragglers (A)

We further investigate the effects of prioritizing underem-
ployed nodes (P) and re-scheduling stragglers (A) described
in Section 4.2 and 4.4. We use Dayu equipped with convex
hull node selection (C) and iterative WSS bandwidth alloca-
tion (W) as the baseline (C+W), which scans tasks with no
prioritization and executes stragglers with the original plan
(i.e. P and A are disabled). Note that in this baseline, Dayu
is aware of those stragglers and will use their information to
schedule the current timeslot but won’t re-schedule stragglers.

Figure 8 presents Dayu’s schedule results with and with-
out P and A. As shown in the figure, the re-scheduling of
stragglers is keen to the performance: compared with the
baseline (C+W), re-scheduling stragglers (C+W+A) reduces
recovery time by 15.6% and reduces the interference as well.
Though prioritizing underemployed nodes has limited ef-
fect without re-scheduling stragglers, it accelerates the re-
covery speed by 7.2% when straggler re-scheduling is already
equipped (compare “All” to the case C+W+A).

5.4 Impacts of Key Parameters
Finally, we measure the impacts of key parameters of Dayu.
The first one is α in Equation 1, which controls the inter-
ference of recovery traffic on foreground traffic. Figure 9(a)
plots the recovery time and interference factor as α increases
from 65% to 85% with the step size of 5%. One can see that
the larger the α, the shorter the recovery time but the larger
the interference factor. In this figure, we further map some of
these simulated interference factors to the p90 latencies from
the real-world experiments, so that we can quantitatively un-
derstand the values of the simulated interference factors. Our
decision to use the value 75% for α is mainly based on these
p90 latencies from real-world experiments: with α = 75%,
Dayu achieves close-to-optimal recovery time and p90 latency
(§5.1); with α= 80%, although Dayu decreases recovery time
by 9.1%, it almost triples the p90 latency of the foreground
traffic.
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Figure 9: Effects of tuning α and β

The next parameter, β, denotes the ratio of selected
nodes from two sorted lists when choosing underemployed
ChunkServers in Section 4.2. We change β from 0% to 10%
with the step size of 2.5%. As shown in Figure 9(b), the value
of β has no significant impact on the interference factor and
setting it to 5% achieves the lowest recovery time, which is
why Dayu sets β to 5%.

Another important parameter is the length of a timeslot
(Ttimeslot ), but since this parameter affects the overall overhead
of Pangu, we were not allowed to change it in the production
system and thus we were not able to record and analyze a
trace with a different Ttimeslot . In general, shorter Ttimeslot will
benefit Dayu by allowing it to react to foreground fluctuation
more quickly but will increase the overhead of Pangu.

6 Related Work

Data Recovery. Popular distributed filesystems such as
GFS [3], HDFS [5], Cosmos [6], and Windows Azure Stor-
age [7] use random node selection and static rate control
for data recovery, same as Pangu. RAMCloud [4, 38] uses
the best-of-two-random algorithm to select the source and
destination for a recovery task. Constrained by the deter-
ministic placement, consistent hashing based storage sys-
tems [17, 22, 39–41] have little flexibility to choose the desti-
nation. Our work shows that randomized algorithms may not
have a good quality in a highly imbalanced environment.
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Some works improve data recovery in erasure-coded stor-
age, by accelerating recovery of one failed block [31, 42, 43]
or designing new recovery-efficient codes [44–47]. Applying
Dayu to erasure-coded storage is our future work.

Data migration. Data recovery can be viewed as a subtopic
of data migration. A number of distributed filesystems [3, 5]
trigger data migration with a simple strategy or even manu-
ally (e.g., running HDFS balancer [48]). Mirador [34] uses a
priority queue to greedily migrate data objects according to
pre-defined rules. However, experiments in [34] report it does
not scale well due to its greedy algorithm. Curator [49] uses a
reinforcement learning solution to determine when to start a
migration task, but it does not choose sources and destinations
for data migration. DH-HDFS [35] utilizes MILP solver to
manage migration of large scale storage system, but for our
problem, MILP is too slow.

Constrained data placement strategies. Besides consis-
tent hashing based storage systems [17, 22, 39–41], there are
other systems restricting the data placement. Facebook [50]
modifies native HDFS to constrain the placement of block
replicas into smaller node groups (i.e., with a smaller scatter
width), reducing the probability of losing data due to simulta-
neous node failures. With a fixed scatter width, CopySets [51]
and Tiered Replication [52] further try to minimize the num-
ber of the distinct copysets in the whole system to reduce the
probability of data loss due to correlated node failures. We
plan to investigate the applicability and effectiveness of Dayu
on these strategies in the future.

Large scale scheduling. Many large-scale computation
platforms need to schedule computation tasks, which is sim-
ilar to schedule recovery tasks in Dayu. Most centralized
schedulers [53, 54] have poor computation performance at
a large scale, and thus distributed schedulers are widely dis-
cussed [36, 55, 56]. However, due to the lack of coordination
and the latest state, these schedulers often fail to generate
high quality decisions [37]. Firmament [37], a centralized
scheduler, succeeds to scale to a 12500-node cluster [57] , but
experiments in [37, 58] report it has limited scalability with
massive short tasks, which is exactly our scenario (§2.2).

7 Conclusion

Our work shows that a centralized scheduler has better
scheduling quality, especially in a dynamic and imbalanced
environment; its weakness, i.e. relatively low speed compared
to the decentralized schedulers, can be mitigated by different
optimizations (e.g. timeslot-based scheduling, convex hull
optimization, etc). As a result, it can support a reasonably
large system we target.
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