System Support for ML

Instructor: Yang Wang

Self Introduction

* Yang Wang

* Associate Professor in CSE

* Email: wang.7564@osu.edu

e Office: DL 689

 Research areas: Distributed and database systems
* https://yangwang83.github.io/

mailto:wang.7564@osu.edu
https://yangwang83.github.io/

How about you?

* Name?

* PhD or master?

 Research area and advisor, if any?

* What do you expect from this course?

Course info

 Schedule:
* Paperreading (30 points)
* Paper presentation (30 points)

* Project (40 points)

* No exams

Paper reading (30 points)

* You are expected to read each paper before class
* You are expected to submit critiques for 30 papers

* Critique: One page; like a paper review
* One paragraph to summarize the paper
* Strengths of the paper
* Weaknesses of the paper
* Any potential future work

Presentation (30 points)

* You are expected to present 2-3 papers

* Two are required
* |[f you choose three, you get an extra 10 points

* 30 mins presentation + 10 mins Q/A

* |f a paper heavily relies on a related work that we have not
discussed, then the presenter is responsible for studying and
presenting the related work

Project (40 points)
* A group of 1-3 students: Project effort should scale with #students

* Topic: You can choose any topic related to ML. If you don’t have an
idea, | can provide some options

* Timeline:
* Submit a proposal by the end of Jan. Describe your goal, your plan, and
your expected output. Discuss with me if you are not sure.

e Submit the report by the end of the semester.
* Make a presentation at the end of the semester

Project (40 points)
* You are expected to work on a research project.

* Due to the nature of research, your project may not achieve your
expected output, which is fine

* In this case, please analyze and report the reasons why it does not
achieve your expectation

* “My project does not work and | don’t know why” is bad.

Topics of this course

* This course is more on the system side and less on the
math/model part

* Included:
* Training: Parallelism, compilation, memory, cluster management, ...
* Inference
* Notincluded:
* Model architecture design: CNN, RNN, Transformer,
* Hyperparameter tuning: Activation function, learning rate,

* Example: We will learn how to train a transformer efficiently, but
not how to change its architecture to make it more effective

NN Training — A system perspective

One neuron first

Outputs to the next layer are the
same, so one neuron has only
one output

One neuron first

It has a weight for each input

Wi
W
X2
W3
X3

First do a weighted sum z = wqxq + WoXo + WaX3 + b

Then do a nonlinear transform called activation output = o(z)
Examples of activation functions: ReLU, Sigmoid, etc

Go back to the full NN

Given inputs at the first (leftmost) layer, we perform the above computations
layer by layer and finally get outputs at the last (rightmost) layer
This is pretty much what inference does.

NN Training — A system perspective

Goal of training: Find the appropriate weights for each neuron to minimize
inference errors (or loss)

NN Training — A system perspective
* Three major steps
* Forward propagation: Same as above

* Backward propagation: Compute the loss and gradient
* Gradient: How does changing a weight affect the loss

* Optimizer: Adjust the weight based on gradients

Backward Propagation — One Neuron

W1 Z=WqXq + WoX, + WaXg + b

output = o(z)

W3 First, define a loss function L to compute the
error/loss L(output, expected) (e.g., squared root)

Backward Propagation — One Neuron

Wi Z=WqXq + WoX, + WaXg + b

output = o(z)

W3 OL OL Oa Oz

gw da 8z Ow

X3 / \
Gradient of w \

Derivative of the
Derivative of the activation function

«— =X

loss function

Backward Propagation — One Neuron

Gradient of w \

Derivative of the
Derivative of the activation function
loss function

X1
Wi Z=WqXq + WXy + WaXg + b
W output = o(z)
X2
W3 OL OL O0Oa 0z _
- — .. &« =X
Xs Jw Oa 0z Ow

To do backward propagation, a neuron needs to
store states during forward propagation

* Atleast x. Maybe intermediate results as well.
* Thisis called “activation state”.

Backward Propagation - Full NN

Loss at the last layer is obvious. How about loss in other layers?
Answer: Propagation loss from the last layer to the first layer

Backward Propagation - Full NN

L= W1 L1 + W2L2 + W3L3

Loss at the last layer is obvious. How about loss in other layers?
Answer: Propagation loss from the last layer to the first layer
Then we can compute gradients at each neuron

Optimizer

* Goal: Apply gradients to update weights
 Computation is local to each neuron

* Simple version (SGD): W, = Wyq— N * gradient

* Modern versions: Adam, etc
* Also leverage historical information
* Require each neuron to store such information called “optimizer state”

Summary so far

* Forward propagation: Use input from left to compute output on
the right (weighted sum and activation)

 Backward propagation: Compute loss/error, propagate loss from
right to left, and compute gradients

* Optimizer: Apply gradients to update weights

System perspective: Matrix Representation

Wi Z=WqXq + WoX, + WaXg + b

output = o(z)

System perspective: Matrix Representation

X11
Z1 = WqqXq + WypXo + WygXg + by
output, = o(z4)

X12
Zy = WoqXq + WooXp + WosXz + b
output, =0o(z

X13 put; = 0(z,)

W11 Wzq

X: X, X
[Z21 23] [1 ? 3] lez W32

+ [by b

System perspective: Matrix Representation

May train multiple inputs (batch) in one iteration

X11 Xy
Z1 = WqqXq + WypXo + WygXg + by
output, = o(z4)
X12 Xoo
Zy = WoqXq + WooXp + WosXz + b
X13 X, output, = 0(z,)

W11 W2q
Z11 Z12] _ [*11 X12 X13 b, b,
Zy1 Zyal T lXp1 Xop X3 Wiz Waz |+ by b
Wiz Wpy3 1 2

System perspective:

May train multiple inputs (batch) in one iteration

X11 Xy
X12 Xoo

X13 Xo

Accelerators like GPU are very good at

matrix computation [

Activation is a vector operation and is also
highly parallelizable

Z11
Z21

Matrix Representation

Zq = WqgXq + WopXo + WqgX3 + by

output, = o(z4)

Zy = Wp1Xq + WooXo + WosXz + by

output, = 0(z,)

W21
W32
Wi3

X12
X22

b,

Z12]
b,

_ [x11
222

I
+
X21 X23 b,

W11
X13

W12

Wi3

|

System perspective: Memory

* Weights
* Activation state: State for computing gradients
* Optimizer state: State for updating weights

* Activation and optimizer states can be much larger than weights
without further optimization

System perspective: Challenges

* How to train a very large model:
* Alarge amount of input
* Using one GPU will take too long
» States do not fit into the memory of one GPU

