
System Support for ML
Instructor: Yang Wang



Self Introduction

• Yang Wang
• Associate Professor in CSE
• Email: wang.7564@osu.edu
• Office: DL 689
• Research areas: Distributed and database systems
• https://yangwang83.github.io/

mailto:wang.7564@osu.edu
https://yangwang83.github.io/


How about you? 

• Name?
• PhD or master?
• Research area and advisor, if any?
• What do you expect from this course?



Course info

• Schedule: ……

• Paper reading (30 points)
• Paper presentation (30 points)
• Project (40 points)

• No exams



Paper reading (30 points)

• You are expected to read each paper before class
• You are expected to submit critiques for 30 papers

• Critique: One page; like a paper review
• One paragraph to summarize the paper
• Strengths of the paper
• Weaknesses of the paper
• Any potential future work



Presentation (30 points)

• You are expected to present 2-3 papers
• Two are required
• If you choose three, you get an extra 10 points

• 30 mins presentation + 10 mins Q/A

• If a paper heavily relies on a related work that we have not 
discussed, then the presenter is responsible for studying and 
presenting the related work



Project (40 points)

• A group of 1-3 students: Project effort should scale with #students

• Topic: You can choose any topic related to ML. If you don’t have an 
idea, I can provide some options

• Timeline: 
• Submit a proposal by the end of Jan. Describe your goal, your plan, and 

your expected output. Discuss with me if you are not sure.
• Submit the report by the end of the semester.
• Make a presentation at the end of the semester



Project (40 points)

• You are expected to work on a research project.

• Due to the nature of research, your project may not achieve your 
expected output, which is fine
• In this case, please analyze and report the reasons why it does not 

achieve your expectation
• “My project does not work and I don’t know why” is bad.



Topics of this course

• This course is more on the system side and less on the 
math/model part
• Included:

• Training: Parallelism, compilation, memory, cluster management, …
• Inference

• Not included:
• Model architecture design: CNN, RNN, Transformer, ……
• Hyperparameter tuning: Activation function, learning rate, ……

• Example: We will learn how to train a transformer efficiently, but 
not how to change its architecture to make it more effective



NN Training – A system perspective

…… ……



One neuron first

Outputs to the next layer are the 
same, so one neuron has only 
one output



One neuron first

It has a weight for each input
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w3

x1

x2

x3

First do a weighted sum z = w1x1 + w2x2 + w3x3 + b

Then do a nonlinear transform called activation output = σ(z)
Examples of activation functions: ReLU, Sigmoid, etc



Go back to the full NN

…… ……

Given inputs at the first (leftmost) layer, we perform the above computations 
layer by layer and finally get outputs at the last (rightmost) layer
This is pretty much what inference does.



NN Training – A system perspective

…… ……

Goal of training: Find the appropriate weights for each neuron to minimize 
inference errors (or loss)



NN Training – A system perspective

• Three major steps

• Forward propagation: Same as above

• Backward propagation: Compute the loss and gradient
• Gradient: How does changing a weight affect the loss

• Optimizer: Adjust the weight based on gradients



Backward Propagation – One Neuron
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z = w1x1 + w2x2 + w3x3 + b

output = σ(z)

First, define a loss function L to compute the 
error/loss L(output, expected)  (e.g., squared root)



Backward Propagation – One Neuron
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z = w1x1 + w2x2 + w3x3 + b

output = σ(z)

Gradient of w

Derivative of the 
loss function 

Derivative of the 
activation function 

= x



Backward Propagation – One Neuron
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z = w1x1 + w2x2 + w3x3 + b

output = σ(z)

Gradient of w

Derivative of the 
loss function 

Derivative of the 
activation function 

= x

To do backward propagation, a neuron needs to 
store states during forward propagation
• At least x. Maybe intermediate results as well.
• This is called “activation state”.



Backward Propagation - Full NN

…… ……

Loss at the last layer is obvious. How about loss in other layers?
Answer: Propagation loss from the last layer to the first layer 



Backward Propagation - Full NN

…… ……

Loss at the last layer is obvious. How about loss in other layers?
Answer: Propagation loss from the last layer to the first layer 
Then we can compute gradients at each neuron

w1

w2

w3

L1

L2

L3

L = w1L1 + w2L2 + w3L3



Optimizer

• Goal: Apply gradients to update weights
• Computation is local to each neuron

• Simple version (SGD): wnew = wold – η * gradient

• Modern versions: Adam, etc
• Also leverage historical information
• Require each neuron to store such information called “optimizer state”



Summary so far

• Forward propagation: Use input from left to compute output on 
the right (weighted sum and activation)
• Backward propagation: Compute loss/error, propagate loss from 

right to left, and compute gradients
• Optimizer: Apply gradients to update weights

…… ……



System perspective: Matrix Representation
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z = w1x1 + w2x2 + w3x3 + b

output = σ(z)



System perspective: Matrix Representation

z1 = w11x1 + w12x2 + w13x3 + b1

output1 = σ(z1)

z2 = w21x1 + w22x2 + w23x3 + b2

output2 = σ(z2)
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System perspective: Matrix Representation
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System perspective: Matrix Representation
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Accelerators like GPU are very good at 
matrix computation
Activation is a vector operation and is also 
highly parallelizable



System perspective: Memory

• Weights

• Activation state: State for computing gradients

• Optimizer state: State for updating weights 

• Activation and optimizer states can be much larger than weights 
without further optimization



System perspective: Challenges

• How to train a very large model:
• A large amount of input
• Using one GPU will take too long
• States do not fit into the memory of one GPU
• ……


